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ABSTRACT ARTICLE HISTORY
Covariates in regressions may be linked to each other on a network. Received 19 January 2021
Knowledge of the network structure can be incorporated into reg- ~ Accepted 13 September 2021

ularized regression settings via a network penalty term. However, KEYWORDS

when it is unknown whether the connection signs in the network Regressions on networks;
are positive (connected covariates reinforce each other) or nega- network penalty;

tive (connected covariates repress each other), the connection signs high-dimensional data;
have to be estimated jointly with the covariate coefficients. This can machine learning

be done with an algorithm iterating a connection sign estimation

step and a covariate coefficient estimation step. We develop such an

algorithm, called 3CoSE, and show detailed simulation results and an

application forecasting event times. The algorithm performs well in

a variety of settings. We also briefly describe the publicly available

R-package developed for this purpose.

1. Introduction

Network data have become increasingly important in the last few decades. This concerns a
variety of types of data and disciplines, including pathway data in biology that reveals infor-
mation relevant for medical research, data on social networks from social media websites
with up to a couple of billion users, or networks of financial institutions relevant for assess-
ing financial stability and designing regulation. There are already some statistical methods
to deal with network data, but the development of such methods seems to be generally still
in early stages.

In this paper, we introduce a method to incorporate network information into a regu-
larized regression setting and provide simulations showing that the method performs well.
The method is an algorithm based on Li and Li [9] who propose a particular network
penalty on top of a Lasso penalty to incorporate network information about the covariates
(that is, it is known which covariates are linked on a network). This method assumes that all
network connections have a positive sign (that is that they are of an activating or enforcing
type). However, there may also be network connections with negative signs (connections
of a repressing type). Often, the signs of the connections are not even known ex-ante.
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Therefore, the algorithm described in this paper estimates the covariate coeflicients and
the connection signs simultaneously.

The idea of the algorithm can be summarized as follows. There are two steps. In a
covariate coeflicient estimation step, the covariate coefficients are estimated by maximizing
a penalized log-likelihood given estimates of the connection signs. Then, in a connec-
tion sign estimation step, the signs of the connections are estimated, taken the covariate
coeflicients as given from the last coefficient estimation step. These two steps are then
iterated.

One of the goals of this method is to improve prediction performance. The method
can, for example, be used to forecast event times of cancer patients and thereby improve
patients’ treatments or add in the development of new medical treatments. In addition
to this, the method can help to gain knowledge about which covariates have an influence
on the outcome and which do not (sensitivity and specificity) and about the signs of the
coefficients. The latter can, in cases where it is important to understand the signs of the
connections, be a goal in its own.

Situating our approach in the literature, there are already several approaches that make
use of double penalties on the log-likelihood and that can deal with covariates connected on
a network [8-12,23].! However, there are only very few methods thus far allowing for the
explicit incorporation of negative connection signs in the regularized regression frame-
work [10,11,17]. These few existing methods estimate the connection signs in a simple
one-step procedure (one step for the sign estimation, so that estimating connection signs
and covariate coeflicients comprise two steps). Our method differs in that it contains an
algorithm to estimate connection signs and covariate coefficients jointly. Gained informa-
tion on one of these two components is used for the estimation of the other component in
an iterative procedure.

This paper is organized as follows. Section 2 describes the algorithm to estimate covari-
ate coeflicients and connection signs and its implementation in a new accompanying
R-package. Section 3 shows simulation studies analyzing prediction performance, sensi-
tivity and specificity, and the fraction of correctly identified connection signs. This section
also shows simulations illustrating in which cases the iteration of the coefficient estima-
tion step and the connection sign estimation step improves over only estimating both parts
once. Section 4 applies the method to time-to-event microarray data. Section 5 concludes.

2. Method

We first describe the setting and background. Then, we introduce the new algorithm and
thereafter discuss its implementation.

2.1. Background

We consider a continuous response y and covariate matrix X . The numbers of observations
and covariates are 7 and p , respectively. Thus, y = (y1,...,y,)" and X is an n x p-matrix
with rows xiT = (Xi1, ..., Xijp). x(j denotes the jth column. We assume y to be centered
and X standardized, which means } /', yi =0, >, x; =0and 1 37 | xizj =1forj=
1,...,p. In the classical linear model y; = xiT,B + €, with €; ~ N(0,02).
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The additional information for the regression problem is given by a network depicted
by a weighted graph. The vertices are the covariates and the edges indicate the relationship
between the covariates. The network information is incorporated into the network penalty
via the normalized Laplace matrix of the associated graph. This is a p x p -matrix defined
as

_ W) ifu=vandd, #0,
dy
L)y =1 —wv) : .
e if u and v are adjacent,
d,d,
0 otherwise,

where u and v stand for the uth and vth covariate and w(u, v) denotes the weight of the
edge that links the uth and vth covariate (see [3]). Often the information is given via a
connection matrix which consists only of zeros and ones indicating only which covariates
are connected, thus w(u, v) is usually zero or one. d,, is the degree of vertex u defined as
the sum of w(u, v) over all vertices v that are linked to vertex u.

Liand Li [9] propose to estimate 8 by minimizing the following penalized residual sum
of squares (selecting A; and A, via 10-fold cross-validation):

p
RSS(h1, 22, 8) = (7 = XB) (= XB) + 21 ) IBj| + 128" LB.

j=1

The set of all edges is denoted by {u ~ v} (this is the set of all directly linked pairs of

predictors). It is then BTLB =", _, (ﬁ;» - %)zw(u, V).

2.2. Ideas behind the algorithm

It is implicitly assumed in Li and Li [9] that all connections between the connected covari-
ates are positive, that is, that they influence the outcome in the same direction. It is likely,
though, that some of the connections have a negative sign (in a biological application, for
example, if a transcription factor su ﬁppresses another gene). In this case, 1t would be suitable
to add a penalty of the form )»2(\/7 f)zw(u v) rather than )»2(\/7 w(u, v)
(see [10]).

It is also possible to look at a different penalty matrix. In addition to the normalized
Laplacian (or mutations of it that arise through negative connection signs), we also use the
combinatorial Laplacian, which is defined by

dy —w(u,u) ifu=vandd, #0,
(Leomb)uy = —w(u, v) if u and v are adjacent,
0 otherwise.

With positive connection signs, the combinatorial Laplacian leads to the following penal-
ized log-likelihood (maximizing this penalized log-likelihood is equivalent to minimizing
the penalized RSS). Thereby, £(8) denotes the log-likelihood of the unpenalized linear
regression problem (scaled, so that the same tuning parameters are obtained as when
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minimizing the penalized RSS)

P
1,02, 8) = £(B) — M D IBjl = 22 ) (Bu— Bu)*w(u, v).

j:l u~v

The difference between using the normalized and the combinatorial Laplacian as penalty

matrices is thus that the normalized Laplacian penalizes the difference of regression coef-

ficients after dividing them by the square root of their degree, while the combinatorial

Laplacian penalizes just the difference between two connected covariates (independent of

their degree, i.e. independent of how many other covariates a covariate is connected to).
We define for all i,j € {1,.. ., p}

£ = —1 if there is a negative connection between covariates i and j,
Y 1 otherwise.

Given an initial penalty matrix M; with (M;);; = 0 if covariates i # j are not connected
(e.g. the normalized or combinatorial Laplacian), the optimal solution would be to use the
penalty matrix with entries —&;;|(M));;| for i # jand [(M));;| otherwise. However, in many

. . +
cases the &;; are unknown and have to be estimated.? Similar to {u ~ v}, {u ~ v} denotes

the set of all connections assumed to have positive signs and {u ~ v} that with negative
signs. Then, we have

Z(ju— J_) (”V)+Z<f J_)zw(u,v)

2
= ;( du Euv\/—) w(u,v).

Given estimates of the covariate coefficients (obtained via maximizing a penalized log-
likelihood with some set of connection signs), the connection signs can be estimated
(anew) as follows. To estimate the connection sign between covariates i and j, all covari-
ate coefficients By are kept fixed, except for the two coefficients whose connection sign is
being estimated (k # i, ), and then a small linear model is fitted for covariates i and j only.
A connection sign is estimated to be positive if the coefficient estimates of the connected
covariates in this small linear model have the same sign. This is a reasonable estimate
of the connection sign as in many applications positively connected covariates influence
the output variable in the same direction, while negatively connected covariates influence
the output variable in opposite directions. These small linear models should thus reveal
information about the sign of the connection.

To be more detailed, the connection signs can be estimated as follows. X —() denotes
the input matrix excluding columns i and j, 7 denotes the estimate of 8 excluding f;
and ,éj, while x(;) denotes again the ith column of the input matrix. Fitting the small linear

model for covariates i and j means considering the new response j = y — X~ () =) and
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minimizing

) T
S G — X — Xighy)? = (5, — (X3 X() ( gj’ )) (}7 — (x(i)» X(j)) ( g; ))

k=1

over (Bi, ,Bj)T. Let (,3,'*, 5]'*)T denote the minimizer of the above residual sum of squares. If

and only if the signs of ,f}i* and ,3j* are different, the connection between covariates i and j
is estimated to have negative sign.

As starting values for the connection sign estimates, the signs of the empirical covariance
of the columns of the input matrix can be taken. Because the covariate matrix is standard-
ized, this boils down to the sign of x(j;)x(j). Thus, the starting value of a connection sign is

positive if xg;) x(j) = 0 and negative otherwise.

2.3. The 3CoSE algorithm

The description above contains the ingredients of the algorithm. We propose to call it
3CoSE (pronounced ‘three-cose’), standing for Covariate Coefficient and Connection
Sign Estimation. Given a log-likelihood £(8), a penalty matrix M;, and fixed penalty
parameters, the algorithm consists of the following steps:

(1) Determine starting values for the connection sign estimates via the empirical covari-
ance, §j; = sign(xg;)x(j)).
(2) Estimate § by maximizing the penalized log-likelihood

p
(01,22, ) = £(B) — M1 Y _ 1Bl — 2B MB

j=1

with the current estimates of the connection signs, where (M);; = —é,’jl (My)j| for i #
jand (M);; = [(My)iil.

(3) Update the connection sign estimates by running mini OLS models, with the current
estimate of 8 from step 2, so that E,] <« s1gn(/8 ) - mgn(ﬂ )-

(4) Iterate steps 2 and 3 until convergence (or for a fixed number of repetitions).

This procedure is often still feasible when straightforward maximization of the penal-
ized log-likelihood over all coefficients and connection signs is computationally prohibitive
(which is not uncommon for big or high-dimensional data). The algorithm usually con-
verges. When it does not converge, it can be run for a certain number of repetitions. It
is very unlikely that a large number of connections have still changing signs and that
their coefficients are important. It is much more likely that the few connections with still
changing signs have coefficients that are estimated to be zero. No convergence is thus not
necessarily problematic.
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2.4. Implementation and R-Package LassoNet

For these simulations, the accompanying R-package LassoNet was developed, which is
publicly available [16]. It implements the covariate coefficient estimation step via coor-
dinate descent (see [5]). This means that only one covariate is updated at a time; all By,
k =1,...pexceptone,say Bj, are kept fixed at their current value and the maximization of
the log-likelihood is conducted only for B;, which is then updated. This is carried out for
all Bij=1,....p, and then the whole cycle is repeated until convergence.

With network penalty matrix M, maximizing the log-likelihood is equivalent to mini-
mizing this residual sum of squares:

2 p
RSS(A1, 22, B) = Z (y, Zx,hﬁh) + 21 ) 1Bul + 228" MB

i=1 h=1

2
p
—Z yi— > xBr— x|+ 11 1Bl
h=1

k#j
p
+22 > MuBi+ 22> 2MuBuBy-
h=1 u~v

One wants to minimize over one B; while keeping all other coefficients fixed at their current

values B. For Bj > 0andy yl = Zk# xik B the derivative with respect to B;j becomes
a
W RSS(A1, 22, B) = Z (=2x35(yi — 7)) + 262B)) + A1 + 2o M + 200 Y My
J#v

Setting this equal to zero, we get

_ 2 i 2xii(yi — 5’?)) —2X2 ) s, M, By —
T 21+ 20, M;

We have used Z?:l xizj = n, which is the case as the input matrix is standardized. The case

of B;j < 0leads to a similar term.>

This finally leads to coordinate updates of the form

,5 5(2?21 2xij()’i - )7,(])) —2A Zj;év A/Ijvlgv’ A1)
P <
! 2n + 20, M;;

>

where S(-, -) is the soft thresholding operator defined by

x—k ifx > 0and|x| > «,
S(x, k) = sign(x)(|x] —x)y =3 x+« ifx <Oand|x| > «,
0 if |x| < k.

Covariance updates can lead to a reduction of compute time (we adapt the version pro-
posed in Friedman et al. [6]). It is y; — y,(" =y — i —{—x,]ﬁj =7 —|—x,J,BJ, where y; =



JOURNAL OF APPLIED STATISTICS . 7

Zle x,-j,é and r; is the current residual. Because the input matrix is standardized, it

is Y iy xii(yi —)7?)) = Y1, x;jri + nfj and then one can write Y 1| x;1; = (x(j),y) —
Zi:l {x(j)> X(k)) Bk> where x(j) is the jth column of the input matrix and (-, -) is the inner
product. This leads to coordinate updates of the form

3 SQnBj + (%) y) — Xy (%) X)) — 242 Yz, MiuBys )
e .
’ 2n + 20, M;;

The inner products of y with all columns of the covariate matrix as well as all inner products
of two columns of the covariate matrix can then be computed in the beginning and stored.
At each coordinate update, they can be accessed.

Note that the coordinate descent algorithm always converges to the global minimum.
The proof is contained in the following footnote.*

3. Simulations

The motivation for the simulations is of biomedical nature, where network informa-
tion about gene expression data is of great interest. Such data, which is usually high-
dimensional, can be used for prediction purposes (e.g. to predict event times of patients
in medical applications), but the signs of the network connections are also of interest in
themselves for biomedical research. The simulations that we conduct are similar to the
ones reported in Li and Li [9].

3.1. Setting

We consider two similar sets of simulations with four scenarios each. The difference
between the two sets is that the first one contains fewer variables, 1100 covariates as com-
pared to 2200 in the second set, while the number of non-zero covariate coefficients is
identical in both sets. That is, in the first set, there are relatively more informative covari-
ates. We first describe the first set in detail and briefly mention the small modifications for
the second set thereafter.

Note that of the four scenarios in each of the two sets of simulations, the third and fourth
scenarios should be seen more as robustness checks. In these scenarios, all connections
between covariates are, per definition, positive. These scenarios do thus not promise any
potential for the 3CoSE algorithm to do better than the penalty introduced by Li and Li [9],
which already assumes positive connections. Nevertheless, it is interesting to see whether
the algorithm does significantly worse in case that all connections are indeed positive.

We use the terminology of gene regulation in the description of the simulation scenarios
to keep the proximity to Li and Li [9]. However, the simulation scenarios are very general
(covariates that are connected on a network, with only a small subset having true non-zero
coefficients), so that the motivation of gene regulation is not crucial for the simulation
scenarios to be relevant.’
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3.1.1. Simulations with 1100 covariates (100 transcription factors).

Suppose that information is available about a regulatory network with 100 transcription
factors and 1000 genes that are controlled by these transcription factors. Each transcrip-
tion factor controls ten genes. The resulting network thus consists of 1100 genes and the
connections between the transcription factors and the genes that they regulate. The covari-
ate matrix X consists of 1100 columns, where the first column consists of the expression
levels of the first transcription factor, the next ten columns are the expression levels of the
genes regulated by the transcription factor in the first column, and so on.

The four scenarios differ mainly in the true covariate coefficient vector 8. We assume a
linear model, ie. y; = xiT,B + ¢; . The number of observations is 100 and €; ~ N(0, 0?)
with 0% = (Zj ﬁjz) /4. The expression levels of the 100 transcription factors are inde-
pendently and identically distributed according to a standard normal distribution. The
expression level of a gene depends on the level of the transcription factor that regulates it.
The expression level of a gene of observation i that depends on the jth transcription fac-
tor (TF;;) follows a N(1 - 0.7 - TF;, 0.51) distribution, where 1 is the indicator function,
which depends on the connection sign and is equal to 1 or —1.

In the first scenario, the true coefficient vector is of the following form:

—5 -5 5 5 5 5 -5 -5
ﬂl_(5’«/1_0"”’x/l_O\/E"”’«/l_O’S\/E"”’«/l_O’«/1_0""’«/5’
3 7 3 7
5, _5,..., _5, > > 5, > > ,_5,..., _5,0,...,0).
V10 V10 V10 V100 /10 V10 V10 «/Ejgé—’
3 7 3 7

In the second scenario, the denominators of /10 are replaced by 10, keeping all else equal.

In these two scenarios, the indicator function 1 takes the value —1 for the first three

regulated genes of a transcription factor, while it takes the value 1 for the other seven genes.
The coefficient vector in the third scenario is

5 5 -5 -5 5 5
ﬁ3_(5,m,...,m,—s,m,...,m,s,m,...,m,
10 10 10
—5,_—5,...,_—5,0,...,0).
V10 V10 ==~
—IO—J 1056

The indicator function 1 in this scenario always equals 1 (this is intuitive as the coeffi-
cients of the transcription factors and the regulated genes always have the same sign). The
fourth scenario is identical to the third one, except that the denominator values of /10 are
replaced by 10.

3.1.2. Simulations with 2200 covariates (200 transcription factors).

In addition to the first set of four scenarios described above, we also consider very similar
scenarios with additional zero-coefficients. That is, instead of considering 100 transcrip-
tion factors, we consider 200 transcription factors, again each one regulating ten genes. The
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four scenarios resemble the four previously discussed scenarios but with additional 1100
zero coefficients in the coefficient vector . The coefficient vector in the first scenario, for
example, is then as follows:

-5 -5 5 5 5 5 -5 -5
=6 e i Vo v Yio vioT T i
3 7 3 7
-5 -5 5 5 5 5 5 -5 -5 0 0
A T/ LR R T TRV Ry
3 7 3 7

3.2. Simulation details and definitions

For each scenario, we simulate 50 training data sets and 50 test data sets. In each training
set, we select the lasso and the network penalty parameters with 10-fold cross-validation.
The regression coefficients and connection signs are then computed using the full train-
ing data set and selected penalty parameters. Prediction mean squared errors are then
calculated on one full test data set. Note that this means that we evaluate the prediction
performance out of sample.

To evaluate the prediction performance, we use the following definitions:

(1) Prediction mean squared error (k here indicates the index of the dataset, k = 1,..., T,
and i indicates the observation number, i=1,...,N ; in our case T = 50 and
N = 100),
N LN
PMSE(yi) = Z Yhi = I = & Z()’k,i — XpiBripia)
T
PMSE(y) = Z PMSE(y%)).
k

(2) Standard errors, denoted by s, for the estimated variable of interest, i.e. PMSE(y) , are
computed as follows:

T
1
_ _ 2
s= kEZI[PMSE(yk) PMSE(y)]>.

The grid from which the possible values of 11 and X, are chosen in the cross validation
is the following:

A1 = {600, . ..,100,99,...,20},
—— ———

in steps of 100 in steps of 3

A2 = {0,...,100}.
— —

in steps of 5
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This grid was chosen based on values found in a variety of small model simulations (these
models were similar to the scenarios that we consider but with fewer covariates).

In the simulation studies, we compare the following methods. First, the regular 3CoSE
algorithm, using the normalized Laplacian as penalty matrix (abbreviated as 3CoSE in the
tables). Second, the 3CoSE algorithm using the combinatorial Laplacian as penalty matrix
(abbreviated as 3CoSE-CL). Third, penalized regression with a network penalty as in Li
and Li [9], which is abbreviated as Net (Li Li) in the tables.® Fourth, we use the Lasso
as a benchmark model, which incorporates information about the levels of the covariates
but not about the network structure. As a comparison, we also partly show a null model
ignoring all covariate information (that is, always forecasting the intercept) and the true
model (that is, forecasting with the B used to create the data).

3.3. Simulation results with 1100 covariates

Now, we consider the prediction mean square errors (PMSEs), sensitivity and specificity
estimates, and the estimates of the fractions of correctly estimated connection signs for the
simulations with 1100 covariates (100 transcription factors). Standard errors are always
given in parentheses.

The prediction performance of the different methods is given in Table 1. The 3CoSE
algorithm with the normalized Laplacian and with the combinatorial Laplacian perform
much better than the other methods in the first scenario. In the other three scenarios, there
are no large differences in PMSEs. This includes the scenarios with all positive connection
signs. Thus, the algorithm seems to be able to improve prediction performance consider-
ably in some cases while not leading to worse performance even in the extreme cases with
only positive connection signs.

Measures of sensitivity and specificity can be found in Table 2. The sensitivity shows
the fraction of non-zero coefficients that have been correctly estimated to be non-zero, the
specificity shows the fraction of zero coefficients that have been correctly estimated to be
zero. 3CoSE identifies non-zero coeflicients similarly well as Net (Li Li) in most scenarios
and considerably better in the first one. The standard algorithm with the normalized Lapla-
cian, in general, performs better than the one with the combinatorial Laplacian, which still
performs quite well. Specificity estimates are similar for 3CoSE and Net (Li Li) in all sce-
narios, while the values are very close to one for the Lasso, which estimates many variables
to be zero (reflected in very good specificity but very poor sensitivity).

Furthermore, we compute the fractions of correctly estimated connections signs. We
consider the connection sign to be correctly identified if the coeflicient estimates of the

Table 1. Prediction mean squared errors (PMSEs).

3CoSE 3CoSE-CL Net (Li Li) Lasso True Null
Scenario 1 105.94 124.45 134.72 136.49 53.44 1121.22
(3.24) (4.81) (4.82) (4.34) (1.05) (22.11)
Scenario 2 52.58 51.75 51.75 61.30 28.11 320.79
(1.45) (1.38) (1.38) (1.97) (0.56) (7.17)
Scenario 3 104.18 115.33 100.25 131.88 52.28 1150.07
(4.13) (4.13) (4.25) (4.26) (0.93) (23.46)
Scenario 4 50.78 50.17 51.64 56.85 27.20 315.56

(1.58) (1.39) (1.36) (1.58) (0.46) (6.45)
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Table 2. Sensitivity and specificity estimates.

Sensitivity 3CoSE 3CoSE-CL Net (Li Li) Lasso
Scenario 1 0.93 0.75 0.67 0.52
(0.02) (0.03) (0.02) (0.01)
Scenario 2 0.47 0.41 0.41 0.26
(0.03) (0.01) (0.01) (0.01)
Scenario 3 0.94 0.84 0.96 0.52
(0.02) (0.03) (0.02) (0.01)
Scenario 4 0.46 0.42 0.57 0.27
(0.02) (0.02) (0.04) (0.01)
Specificity
Scenario 1 0.94 0.95 0.95 0.99
(0.0023) (0.0026) (0.0025) (0)
Scenario 2 0.96 0.96 0.96 1
(0.003) (0.0029) (0.0029) (0)
Scenario 3 0.94 0.94 0.94 0.99
(0.0026) (0.0025) (0.0028) (0)
Scenario 4 0.96 0.97 0.96 1
(0.0026) (0.0025) (0.0029) (0)

Table 3. Fractions of correctly estimated connection signs.

3CoSE 3CoSE-CL Net (Li Li) Lasso
Scenario 1 0.95 0.82 0.80 0.66
(0.03) (0.05) (0.06) (0.07)
Scenario 2 0.62 0.58 0.58 0.48
(0.07) (0.07) (0.07) (0.07)
Scenario 3 0.94 0.84 0.96 0.52
(0.03) (0.05) (0.03) (0.07)
Scenario 4 0.46 0.42 0.57 0.27
(0.07) (0.07) (0.07) (0.06)

two connected covariates are non-zero and either both estimates and both true coefficients
have the same signs or if both have different signs (this allows us to also talk about cor-
rectly identified connections for Net (Li Li) and the Lasso, although these methods are not
intended to estimate network connection signs. As can be seen in Table 3, 3CoSE performs
much better than Net (Li Li) in the first scenario, similarly in the second and third and a bit
worse in the fourth (remember, however, that scenarios 3 and 4 are designed as favorably
to Net (Li Li) as possible as all connection signs are positive). The Lasso does much worse
in identifying the connection signs than the other methods across the different scenarios.

The 3CoSE algorithm converges in all simulations and scenarios. In the first scenario,
only in 10% of cases, the algorithm needs more than one iteration to converge. In the second
scenario, convergence happens after the first iteration in 36% of cases, while in the third and
fourth scenarios the algorithm converges after the first iteration in all cases. The selected
tuning parameters can be found in the appendix.

3.4. Simulation results with 2200 covariates

The results for simulations with 200 transcription factors (and thus 2200 covariates) are
similar to the results for the simulations with 100 transcription factors. These results are
reported in Tables 4-6 (the selected tuning parameters have again been relegated to the
appendix).
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Table 4. Prediction mean squared errors (PMSEs), 2200 covariates.

3CoSE 3CoSE-CL Net (Li Li) Lasso True Null
Scenario 1 123.17 139.28 146.92 144.94 51.59 114037
(6.15) (5.75) (6.12) (6.1) (0.98) (27.61)
Scenario 2 52.27 52.03 51.89 57.82 27.32 308.51
(1.69) (1.66) (1.65) (1.95) (0.55) (6.33)
Scenario 3 118.61 131.76 111.98 136.6 51.65 1152.17
(4.21) (4.47) (3.94) (4.43) (0.99) (23.61)
Scenario 4 52.15 50.93 53.18 58.26 27.89 315.07
(2.06) (1.99) (2.07) (2.75) (0.61) (6.59)

Table 5. Sensitivity and specificity estimates, 2200 covariates.

Sensitivity 3CoSE 3CoSE-CL Net (Li Li) Lasso
Scenario 1 0.86 0.72 0.6 0.48
(0.03) (0.03) (0.02) (0.01)
Scenario 2 0.40 0.37 0.37 0.25
(0.02) (0.01) (0.01) (0.01)
Scenario 3 0.84 0.69 0.92 0.49
(0.03) (0.03) (0.02) (0.01)
Scenario 4 0.44 0.39 0.54 0.27
(0.03) (0.01) (0.04) (0.01)
Specificity
Scenario 1 0.97 0.97 0.98 0.99
(0.0013) (0.0012) (0.0011) 0)
Scenario 2 0.98 0.98 0.98 1
(0.0014) (0.0014) (0.0014) (0)
Scenario 3 0.97 0.97 0.97 0.99
(0.0011) (0.0013) (0.0012) 0)
Scenario 4 0.98 0.98 0.97 1
(0.0015) (0.0015) (0.0015) (0)

Table 6. Fractions of correctly estimated connection signs,
2200 covariates.

3CoSE 3CoSE-CL Net (Li Li) Lasso
Scenario 1 0.91 0.80 0.74 0.63
(0.04) (0.06) (0.06) (0.07)
Scenario 2 0.59 0.57 0.56 0.48
(0.07) (0.07) (0.07) (0.07)
Scenario 3 0.84 0.69 0.92 0.49
(0.05) (0.07) (0.04) (0.07)
Scenario 4 0.44 0.39 0.54 0.27
(0.07) (0.07) (0.07) (0.06)

In short, in terms of PMSEs, 3CoSE performs again extremely well in the first scenario,
while prediction errors are similar to those of Net (Li Li) in the other scenarios. The sen-
sitivity and specificity estimates are comparable to the ones in the simulations with 100
transcription factors, meaning that the sensitivity is considerably better in the first scenario
for 3CoSE than for Net (Li Li) while differences are relatively small in the other scenarios.
Specificity is similar between the methods. The Lasso again estimates many variables to be
zero leading to high specificity but low sensitivity.

Again, in all cases, the algorithm converged. Convergence took place similarly fast as
in the set with 1100 covariates suggesting that the number of covariates is not a driving
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factor in determining the rate of convergence of the algorithm. In the first two scenarios,
for example, convergence took more than one iteration (of the connection sign estimation
step) in only 16% and 32% of the cases, respectively. It is also worth mentioning here that
in both sets of simulations, the algorithm converged after at most 4 iterations. Average
selected penalty parameters in the second set of simulations are also similar to the ones in
the regressions with 1100 covariates, with slightly lower values for A, in the 2200 covariate
setup.

3.5. Improvement of the algorithm over one single estimation step

One may wonder in what cases the algorithm improves over a simple-one step estimation
of the connection signs. To show this, we compare our proposed approach of iteratively
re-estimating the connection signs with only conducting one iteration of the algorithm
(which corresponds to using a simple one-step estimator for the connection signs based on
the initial sample covariance). We run small scale simulation studies that are as Scenario 1
above, with a lower number of zero covariates (p = 200) and with different levels of noise.

In the simulations, we vary the signal-to-noise ratio (SNR) by multiplying the standard
deviation o with different values, denoted by «. The signal-to-noise ratio in (the shortened

version of) Scenario 1 is by definition
VIXB1l3/n

Ri=———,
o1
where B and o] are the slope coeflicients and the standard deviation of (the shortened)
Scenario 1. We increase and decrease the standard deviation in the new simulations by «,
thatisweseto = ko, withk € {0.1,0.2,...,2},and use o to generate the data. Therefore,
for each «, the signal-to-noise ratio is

\/||Xﬂ1||§/n \/IIXﬁllli/n SNR;
SNR = = = :

o Ko K

For k = 1, we retain the same data generating process an in Scenario I, just with a lower
number of zero covariates. The signal-to-noise ratio decreases with «, that is, for lower
values of «, the signal-to-noise ratio is higher than for higher values of «.

To compare the full 3CoSE algorithm to the version of it using only one iteration, we
compute the ratio of the prediction mean squared errors, for different values of «:

PMSE}COSE

PMSE _ratio(k) = PMSEC™ . (1)

A ratio smaller than 1 indicates that the 3CoSE algorithm has a smaller prediction error.
We plot this ratio of the prediction mean squared errors as a function of « in Figure 1.
The results reveal that the 3CoSE algorithm improves over a single estimation of the
covariate coeflicients after the initial connection sign estimation for sufficiently high val-
ues of the signal-to-noise ratio (corresponding to sufficiently low values of x). When
the signal-to-noise ratio decreases (when « increases), the difference in prediction per-
formance becomes smaller until it disappears (the full algorithm never leads to worse
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Figure 1. Prediction error ratio — the figure shows the prediction error ratios ratio, for a range of k €
{0.1,0.2,...,2}.

performance than the simple one-iteration version in the simulations that we conduct).
When the signal-to-noise ratio is higher, the algorithm yields more accurate coeflicient sign
estimates, thereby improving the estimation of the covariate coefficients and thus obtains
superior prediction performance.

4. Data application

We apply the method to time-to-event data from patients with diffuse large B-cell lym-
phoma [13]. The data contain 240 observations with 7399 microarray features, the number
of events is 138. We restrict the analysis forecasting event times to the microarray fea-
tures represented in regulatory and cancer pathways in the KEGG pathway database. This
reduces the number of microarray features to 1281 (however, we do use the additional
microarray features for inverse probability weighting, which we employ, because part of
the data are censored or truncated). The regulatory network linking the 1281 microarray
features contains in total 3645 connections. For details on pre-processing of the data, see
Schumacher et al. [14] or Binder and Schumacher [1]. The approach we take is to use a
linear model with inverse probability weighting to account for censored or truncated data
(see, e.g. Wooldridge [22]). This is a straightforward approach that is easy to interpret and
implement. Note, however, that this is not the only possible approach to deal with such
data, an alternative would, for instance, be to use Cox regressions (for an example with a
network penalty making use of Cox regressions, see Sun et al. [17]).

4.1. Inverse probability weighting

Inverse probability weighting is a method to reweight the data, which can be used, for
example, to take into account that data may be censored or truncated (it is thus in spirit
similar to using a sample pre-processed with matching techniques, as for example proposed
in Ho et al. [7]). Inverse probability weighting consists of two parts. First, for each observa-
tion, the probability that an event is reported (i.e. that it is neither censored nor truncated)
is estimated. Second, the data is restricted to those observations with a reported event, and
each observation receives the weight of the inverse estimated probability that an event is
reported for this observation (thus observations for which it is likely that relatively many
similar observations are censored or truncated receive a higher weight).
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We employ the 6119 covariates not used for forecasting to estimate the probability that
an event is reported for an observation. This estimation (the first part described in the
previous paragraph) consists of two steps. Because the problem is high dimensional, we first
perform variable selection. Therefore, we use a Lasso logit regression. In this regression,
the dependent variable is the binary variable indicating whether an event was reported for
observation or not (1 = yes, 0 = no). We use 10-fold cross-validation to determine the
penalty parameter that leads to the best prediction. This yields a selection of 24 covariates.
However, we do not use the Lasso logit estimates, because of their bias. Instead, we use the
selected 24 covariates in the second step to estimate the probabilities with a regular logit
regression. We denote the estimated probability (from the second step) that an event is
reported for observation i by p;.

We then use the inverse probability weights to reweight the data (the second part

described in the previous paragraph). Therefore, we restrict the data to those observations
Al

for which an event is reported. We reweight each observation i by 15"—13,1, where N is the
k=1Pk

. . N ~_1. ..
number of observations with an event and ) ;_, p, ! is a normalization factor.

4.2. Application of the method to the reweighted data

We can now adequately forecast (log) event times with the reweighted data. To be precise,
reweighting the data means for the estimation of the penalized log-likelihood that the part
of the log-likelihood or the RSS, which reads without any reweighting (y — X8)T(y — X8)
, or equivalently Zf\i L i — xI' B)?, becomes

i T 5y2

D )
N -1 i

i 2k=1P%
This expression equals (z — UB)T(z — UB) , where z and U are the variables arising from
y and X by multiplying each element of observation i by the square root of the weight,
that is by \/p; ! /ZkN:1 f)k_l ,fori =1,...,N. Thus, with y denoting the vector of log event
times of the unweighted data of all observations with an event, the dependent variable that
can be used as input in the regular version of the regression or algorithm software z equals

(P, P iy hNt />R pr ' yn)T . Similarly, with X denoting the covariate
matrix of the unweighted data of all observations with an event, the covariate matrix that
can be used as input in the regular version of the regression or algorithm software, U, is
constructed by multiplying all elements in row i of X by ,/ f)l_l / ZkN=1 f);l ,i=1,...,N.
Thus, the inverse probability weighting can be implemented with this pre-multiplication
of the data, so that zand U can (after standardization) be used as straightforward inputs to

the software. It is, therefore, in general not necessary to use different versions of code for
the statistical methods we compare.

4.3. Results

We analyze the performance of the different methods employing the 0.632 -bootstrap [4]
with 50 bootstrap samples (that is, we draw 0.632#n observations per sample, which is the
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Table 7. Forecast errors (.632 bootstrap), diffuse B-cell lymphoma data.

3CoSE 3CoSE-CL Net (Li Li) Lasso
Error .632 (x 100) 0.7302 0.7327 0.7309 0.9116
Bootstrap SEs (x 100) (0.2115) (0.2119) (0.2116) (0.2185)

expected number of unique observations when drawing with replacement). Over the 50
bootstrap samples, the 3CoSE algorithm with the normalized Laplacian selects on average
91 microarray features (out of 1281), 3CoSE-CL selects 202, Net (Li Li) selects 82, while
a pure Lasso regression selects only 9 (penalty parameters are again selected via 10-fold
cross validation).”

Table 7 reports the forecast errors (0.632 -bootstrap estimates of prediction errors), mul-
tiplied by 100 for convenience (standard errors are computed over the bootstrap samples
and also multiplied by 100). We can see that the three methods taking into account network
information improve considerably over the standard Lasso with forecast errors that are
about 20 % lower. However, there are hardly any differences between 3CoSE, 3CoSE-CL,
and Net (Li Li). 3CoSE has the lowest forecast error, followed by Net (Li Li), but differences
between the three network methods are minimal.

On average, both 3CoSE and 3CoSE-CL estimate about 70% of network connections
to be positive and 30% to be negative. 3CoSE estimates 2553 connections to be positive
and 1092 negative, 3CoSE-CL estimates 2561 positive and 1084 negative connection signs.
However, the number of negative connection signs of connections between two covariates
that are estimated to be non-zero is much lower. 3CoSE estimates that on average about 4
connections between selected covariates are negative, while 3CoSE-CL estimates that no
connections between non-zero covariates are negative.

This may explain why the forecasting performance is so similar between 3CoSE, 3CoSE-
CL, and Net (Li Li). While a considerable number of connection signs are estimated to be
negative, the regression coefficients of the negatively connected covariates are usually esti-
mated to be zero. The (relatively few) connected selected covariates have almost exclusively
connection signs that are estimated to be positive. In that sense, the data resembles the sim-
ulations with only positive connections, and we see again that also in such a case the new
algorithm performs as well as the method already assuming positive connections in terms
of predictive power (while the newly gained information about connection signs can be of
interest also for connections between covariates that have an estimated coefficient of zero).

5. Summary

This paper shows that incorporating network information into regularized regression
via the introduced 3CoSE algorithm can lead to improved prediction performance. This
algorithm can furthermore contribute to discovering signs of network connections when
these are unknown. This can be helpful in a variety of fields where networks play an impor-
tant role, including biology and biomedicine (we have borrowed the motivation of the
conducted simulation studies and the microarray data to which we applied the method
from these fields), economics, finance, and computer science. We make the accompa-
nying R-package LassoNet [16] publicly available, in the hope that this method will be
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more widely applied in different fields. The availability of the R-package may also facilitate
refining the method to adapt it to different settings.

Notes

1. Other work with double penalty functions includes the elastic net [24] and the sparse-group
lasso [15]. There are also more general structured-sparsity inducing penalty functions, see, for
instance, [2] and the references therein. See [19] for a comprehensive treatment of structured
sparsity regression problems.

2. We assume that a penalty matrix M is symmetric and that we can write BTMp =
D umy (@, v) By + b(u, v)B,)%, with a(u,v) and b(u,v) real numbers. The normalized and
combinatorial Laplacians are of such a form.

z, 12xzj()’l }’, ) 2h2 Z]¢VM]vﬂv+)\l

2n+2r,Mj

4. The proof makes use of a theorem from [18] stating that the coordinate descent algorithm

converges to the global minimum in cases where the function f that shall be minimized is

of the form f(B1, ..., Bp) = g(B1,.. .. Bp) + Zle h;(B;), with g differentiable and convex and
hj,y =1,...,p convex.
With a network penalty, the penalized RSS can be written as RSS(8) = g(8) + Z h;i(B;),

with g(B) = (y — X,B)T(y — XB) + 1,8TMB and hij(Bj) = 111B;j]. Then g is a sum ofdlfferen-
tiable and convex functions and thus again differentiable and convex, while the ; are obviously
convex.
In short, if BTMp is convex, the coordinate wise descent algorithm is sure to converge to the
global minimum. That is in particular the case for all M which allow 8T Mp to be written as a
sum of squared terms.

5. One may argue that gene regulation could be depicted by a directed graph. However, we do not
consider it problematic if network information that could be represented by a directed graph
is entered into the regression setting via an undirected graph (as similarly done in Li and Li
[9], among others). Information on the directions (where available) is simply not used in the
method, because the second part of the penalty term only penalizes differences between regres-
sion coefficients of two connected covariates (sometimes the negative thereof), independently
of whether one influences the other or vice versa. Naturally, the method thus cannot be used
to discover directions in a covariate network, should the covariates be connected on a directed
graph, but the method can be used to improve prediction performance, to select covariates, or
to find out about connection signs.

6. We do not apply any double-shrinkage correction, which is mentioned in Li and Li [9]. Unlike
in the elastic net [24], where one may indeed talk of double shrinkage, the additional network
penalty pulls different coefficients toward each other and not toward zero.

3. To be precise, for f; < 0, we obtain g; =

7. The grid of penalty parameters consists of the combinations of A; = {300,...,100,99,...,1}
~————— — —
in steps of 25  in steps of 6
and A, = {0, ...,400}.
—
in steps of 10

8. The selected tuning parameters can again be found in the appendix.
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Appendix. Selected tuning parameters

A.1 Simulations with 1100 covariates

Tables A1l and A2 show the parameters that were selected via cross-validation in the different scenar-
ios for the different methods in the simulations with 1100 covariates. Average selected A parameters
for the first three methods (3CoSE, 3CoSE-CL and Net(Li Li)) are between 83 and 135, while for
the lasso it is always 400. The selected network penalty parameter A, varies across methods and
simulations in a range from 0 to 71.

A.2 Simulations with 2200 covariates

Tables A3 and A4 similarly show the parameters that were selected via cross-validation in the
different scenarios for the different methods in the simulations with 2200 covariates.

A.3 Application to diffuse large B-cell Lymphoma data

Table A5 shows the average selected penalty parameters in the application to real data. The penalty
parameters selected by 3CoSE, 3CoSE-CL, and Net (Li Li) are of similar magnitude with a somewhat
lower L; penalty parameter for 3CoSE-CL but a bit higher network penalty parameter. Pure Lasso

Table A1. Average selected A1 values.

3CoSE 3CoSE-CL Net (Li Li) Lasso
Scenario 1 84.36 90.40 99.06 400
Scenario 2 108.30 118.62 118.62 400
Scenario 3 83.30 85.36 89.70 400
Scenario 4 128.60 134.08 109.86 400

Table A2. Average selected A, values.

3CoSE 3CoSE-CL Net (Li Li)
Scenario 1 21.30 8.50 3.60
Scenario 2 1.60 0.00 0.00
Scenario 3 27.30 14.70 70.60
Scenario 4 1.70 0.70 19.60

Table A3. Average selected A1 values, 2200 covariates.

3CoSE 3CoSE-CL Net (Li Li) Lasso
Scenario 1 111.82 112.24 146.34 400.00
Scenario 2 109.76 114.88 115.48 400.00
Scenario 3 91.80 119.16 86.18 400.00

Scenario 4 103.52 109.60 91.52 400.00
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Table A4. Average selected A; values, 2200 covariates.

3CoSE 3CoSE-CL Net (Li Li)
Scenario 1 19.40 6.40 1.80
Scenario 2 1.20 0.10 0.10
Scenario 3 14.60 8.10 56.70
Scenario 4 0.90 0.00 15.30

Table A5. Average selected A1 and X, values in the
application to diffuse large B-cell ymphoma data.

3CoSE 3CoSE-CL Net (Li Li) Lasso
A 61.96 45.4 67.44 250
A2 105.8 113.2 88.4

has a higher L; penalty parameter than the other methods, in line with the observation that Lasso
selects fewer covariates.



