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Abstract

The paper uses structured machine learning regressions for nowcasting with panel

data consisting of series sampled at different frequencies. Motivated by the problem

of predicting corporate earnings for a large cross-section of firms with macroeconomic,

financial, and news time series sampled at different frequencies, we focus on the sparse-

group LASSO regularization which can take advantage of the mixed frequency time

series panel data structures. Our empirical results show the superior performance of

our machine learning panel data regression models over analysts’ predictions, fore-

cast combinations, firm-specific time series regression models, and standard machine

learning methods.
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1 Introduction

Nowcasting is intrinsically a mixed frequency data problem as the object of interest
is a low-frequency data series — observed say quarterly — whereas real-time infor-
mation — daily, weekly or monthly — during the quarter can be used to assess and
potentially continuously update the state of the low-frequency series, or put differ-
ently, nowcast the series of interest. Traditional methods being used for nowcasting
rely on dynamic factor models which treat the underlying low-frequency series of in-
terest as a latent process with high-frequency data noisy observations. These models
are naturally cast in a state-space form, and inference can be performed using stan-
dard techniques (in particular the Kalman filter, see Bańbura, Giannone, Modugno,
and Reichlin (2013) for a recent survey).

Things get more complicated when we are operating in a data-rich environment
and we have many target variables. Put differently, we are no longer interested in
nowcasting a single key series such as the GDP growth where we could devote a lot of
resources to that particular series. A good example is corporate earnings nowcasting
for a large cross-section of corporate firms. The fundamental value of equity shares
is determined by the discounted value of future payoffs. Every quarter investors get
a glimpse of firms’ potential payoffs with the release of corporate earnings reports.
In a data-rich environment, stock analysts have many indicators regarding future
earnings that are available much more frequently. Ball and Ghysels (2018) took a
first stab at automating the process using MIDAS regressions. Since their original
work, much progress has been made on machine learning (ML) regularized mixed
frequency regression models.

In the context of earnings, we are potentially dealing with a large set of individual
firms for which there are many predictors. From a practical point of view, this is
clearly beyond the realm of nowcasting using state space models. In the current
paper, we significantly expand the tools of nowcasting in a data-rich environment by
exploiting panel data structures. Panel data regression models are well suited for the
firm-level data analysis as both the time series and cross-sectional dimensions can be
exploited. In such models, time-invariant firm-specific effects are typically used to
capture cross-sectional heterogeneity in the data. This is combined with regularized
regression machine learning methods which are becoming increasingly popular in
economics and finance as a flexible way to model predictive relationships via variable
selection. We focus on the panel data regressions in a high-dimensional data setting
where the number of covariates could be large and potentially exceed the available
sample size. This may happen when the number of firm-specific characteristics, such
as textual analysis news data or firm-level stock returns, is large, and/or the number
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of aggregates, such as market returns, macro data, etc., is large.

Our paper relates to several existing papers in the literature. Khalaf, Kichian,
Saunders, and Voia (2021) consider low-dimensional dynamic mixed frequency panel
data models but do not deal with high-dimensional data situations in the context
of nowcasting or forecasting. Similarly, Fosten and Greenaway-McGrevy (2019) con-
sider nowcasting with a mixed-frequency VAR panel data model, but not in the
context of a high-dimensional data-rich environment that we are interested in here.
Babii, Ball, Ghysels, and Striaukas (2022) introduce the sparse-group LASSO (sg-
LASSO) regularization machine learning methods for heavy-tailed dependent panel
data regressions potentially sampled at different time series frequencies. They derive
oracle inequalities for the pooled and fixed effects models, the debiased inference for
pooled regression, and consider an application to the Granger causality testing. In
this paper, we explore how to use their framework for nowcasting large panels of
low-frequency time series.

We focus on nowcasting current quarter firm-specific price-earnings ratios (hence-
forth P/E ratios). This means we focus on evaluating model-based within-quarter
predictions for very short horizons. It is widely acknowledged that P/E ratios are a
good indicator of the future performance of a company and, therefore, are used by an-
alysts and investment professionals to base their decisions on which stocks to pick for
their investment portfolios. Typically investors rely on consensus forecasts of earn-
ings made by a pool of analysts. We, therefore, choose such consensus forecasts as
the benchmark for our proposed machine learning methods. Ball and Ghysels (2018)
and Carabias (2018) documented that analysts tend to focus on their firm/industry
when making earnings predictions while not fully taking into account the impact of
macroeconomic events. Babii, Ball, Ghysels, and Striaukas (2022) tested formally
in a high-dimensional data setting the hypothesis that systematic and predictable
errors occur in analyst forecasts and confirmed empirically that they leave money
on the table. The analysis in the current paper is therefore an logical extension of
this prior work. In addition, we also compare our proposed new methods with the
MIDAS regression forecast combination approach used by Ball and Ghysels (2018)
as well as a simple random walk model.

Our high-frequency regressors include traditional macro and financial series as
well as non-standard series generated by textual analysis of financial news. We
consider structured pooled and fixed effects sg-LASSO panel data regressions with
mixed frequency data (sg-LASSO MIDAS). By “structured” we mean that the ML
procedure is set up such that it recognizes the time series and panel structure of the
data. This is a departure from standard ML which is rooted in a tradition of i.i.d.
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covariates and therefore time series and panel data structures are not recognized.
For the purpose of comparison, we include elastic net estimators in our analysis, as
a representative example of standard ML.

In our empirical analysis we study nowcasting the firm-level P/E ratio for a
large set of firms. Moreover, we decompose the (log of) the P/E ratio into the
return for firm i and analyst prediction errors. Therefore, nowcasting the log P/E
ratio could also be achieved via nowcasting its two components. The decomposition
corresponds to the distinction between analyst assessments of firm i’s earnings and
market/investor assessments of the firm.

Our empirical results can be summarized as follows. Predictions based on analyst
consensus exhibit significantly higher mean squared forecast errors (MSEs) compared
to model-based predictions. These model-based predictions involve either direct log
P/E ratio nowcasts or their individual components. The MSE for the random walk
model and analysts’ concensus are quite similar, and therefore random walk predic-
tions are outperformed by the model-based ones as well. A substantial proportion
of firms (approximately 60%) exhibit low MSE values, indicating a high level of pre-
diction accuracy. However, there are a few firms for which the MSEs are relatively
larger, suggesting lower prediction performance for these specific cases. Comparing
direct log P/E ratio nowcasts versus those based on its components, we observe a
substantial improvement in prediction accuracy when using the individual compo-
nents. This improvement is consistently evident across individual, pooled, and fixed
effects regression models. Moreover, the sparsity patterns differ significantly across
the direct versus component prediction models.

Our framework allows us to go beyond providing quarterly nowcasts and gen-
erate daily updates of earnings series. Leveraging the daily influx of information
throughout the quarter, we continuously re-estimate our models and produce now-
cast updates as soon as new data becomes available. We report the distribution of
Mean Squared Errors (MSEs) across firms for five distinct nowcast horizons: 20-day,
15-day, 10-day, and 5-day ahead, as well as the end of the quarter and show that as
the horizons become shorter, both the median and upper quartile of MSEs decrease.
The sg-LASSO estimator we employ in our study is well-suited for incorporating
grouped fixed effects. This approach involves grouping firm-specific intercepts based
on either statistical procedures or economic reasoning, as outlined in Bonhomme and
Manresa (2015). In our analysis, we utilize the Fama French industry classification to
form 10 distinct groups for grouping fixed effects. Our findings suggest that grouped
fixed effects strike a better balance between capturing heterogeneity and pooled pa-
rameters, resulting in more accurate nowcast predictions. These results support the
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notion that incorporating group fixed effects enhances the overall performance of our
forecasting model.

Next we address the challenge of missing earnings data, which can complicate
the analysis. We examine the performance of parameter imputation methods in
computing nowcasts, see, e.g, Brown, Ghysels, and Gredil (2023), even when earnings
and/or earnings forecasts are missing for certain observations in the sample. The
results obtained through parameter imputation outperform the analyst consensus
nowcasts in terms of prediction accuracy.

The paper is organized as follows. Section 2 introduces the models and estima-
tors. A simulation study reporting the finite sample nowcasting performance of our
proposed methods appears in Section 3. The results of our empirical application
analyzing price-earnings ratios for a panel of individual firms are reported in Section
4. Section 5 concludes. All technical details and detailed data descriptions appear
in the Appendix and the Online Appendix.

2 High-dimensional mixed frequency panel data

In this section, we describe the methodological approach of the paper. Motivated
by our application, we will refer to the cross-sectional observations as firms, the
low-frequency observations as quarterly while the high-frequency observations are
daily or monthly. However, the notation presented in this section is generic and can
correspond to other entities and frequencies. The objective is to nowcast {yi,t : i ∈
[N ], t ∈ [T ]} (where for a positive integer p, we put [p] = {1, 2, . . . , p}), in our case
a panel of P/E ratios (or its decomposition into returns and analyst forecast errors)
for N firms observed at T time periods. The covariates consist of K time-varying
predictors measured potentially at higher frequencies{

xi,t−j/nH
k ,k : i ∈ [N ], t ∈ [T ], j = 0, . . . , nL

kn
H
k − 1, k ∈ [K]

}
,

where nH
k is the number of high-frequency observations for the kth covariate in a

low-frequency time period t, and nL
k is the number of low-frequency time periods

used as lags. For instance, nL
k = 1 corresponds in our application to a quarter of

high-frequency lags used as covariates and nH
k = 3 corresponds to monthly data with

3 month of data available per quarter. Note that we can think of mixtures of say
annual, quarterly, monthly and weekly data, and therefore nH

k represents different
high frequency sampling frequencies and associated lags nL

kn
H
k .
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In our empirical analysis we examine three types of regression model specifica-
tions: (a) regularized single equation regressions for each individual firm, (b) regular-
ized panel regressions with pooling, and (c) regularized panel regressions with fixed
effects. Hence, in (a) we do not explore the panel structure of the data, whereas in
(b) and (c) we do. To discuss the model specifications, we focus here on (b) and (c),
keeping in mind that the single regression case is a straightforward simplification of
the panel regression models.

Consider the mixed frequency panel data regression for yi,t|τ , that is observation
i for low-frequency nowcasting y at time t using information up to τ :

yi,t|τ = αi +
K∑
k=1

ψ(L1/nH
k ; βk)xi,τ,k + ui,t|τ ,

where αi is the entity-specific intercept (depending on τ but we suppress this detail
to simplify notation), and

ψ(L1/nH
k ; βk)xi,τ,k =

1

kmax

kmax−1∑
j=0

βj,kL
j/nH

k xi,τ,k (1)

where kmax is the maximum lag length which may depend on the covariate k, and for
each high frequency covariate xi,τ,k we have the most up to date information available
at time τ. This may imply that for some high frequency regressors this is stale
information as they have not been updated yet, but presumably at least some of the
high frequency data are fresh real-time information at the time τ the nowcast is being
made. For instance, in our quarterly/monthly application we can have τ = (t− 1)+
1/3 in which case we nowcast quarter t with information available at the end of the
first month of that quarter. In this example, some high frequency series for the first
month may be available while some may not due to say publication lags. Likewise,
with τ = (t − 1) + 2/3 we can revise the previous nowcast with one extra month
of information, which taking into account publication lags may include observations
from the first month as the most recent releases. It should parenthetically be noted
that for τ ≤ t − 1, we are dealing with a forecasting situation and therefore our
analysis applies to both nowcasting and - ceteris paribus - forecasting.

To reduce the dimensionality of the high-frequency lag polynomial, we follow the
MIDAS ML literature, see Babii, Ghysels, and Striaukas (2021, 2022), and estimate
a weight function ω parameterized by a relatively small number of coefficients L

ψ(L1/nH
k ; βk)xi,τ,k =

1

kmax

kmax−1∑
j=0

ω

(
j

nH
k

; βk

)
xi,τ,k,
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where the MIDAS weight function is ω(s; βk) =
∑L−1

l=0 βl,kwl(s), (wl)l≥0 is a collection
of L approximating functions, called the dictionary, and βk ∈ RL is the unknown
parameter. An example of a dictionary used in the MIDAS ML literature is the set
of orthogonal Legendre polynomials. To streamline notation it will be convenient to
assume, without loss of generality, a common lag length, i.e. k̄max = kmax ∀ k ∈ [K].
The linear in parameters dictionaries map the MIDAS regression to a standard linear
regression framework. In particular, define xi = (Xi,1W, . . . , Xi,KW ), where for each
k ∈ [K], Xi,k = (xi,τ−j/nH

k ,k, j = 0, . . . , k̄max−1)τ∈[T ] is a T×k̄max matrix of covariates

and k̄maxW = (wl(j/n
H
k ; βk)0≤l≤L−1,0≤j≤k̄max

is a k̄max × L matrix corresponding to
the dictionary. In addition, let yi = (yi,t|τ , t, τ ∈ [T ])⊤ and ui = (ui,t|τ , t, τ ∈ [T ])⊤.
The regression equation after stacking time series observations for each firm i ∈ [N ]
is as follows

yi = ιαi + xiβ + ui,

where ι ∈ RT is the all-ones vector and β ∈ RLK is a vector of slope coefficients.
Lastly, put y = (y⊤

1 , . . . ,y
⊤
N)

⊤, X = (x⊤
1 , . . . ,x

⊤
N)

⊤, and u = (u⊤
1 , . . . ,u

⊤
N)

⊤. Then
the regression equation after stacking all cross-sectional observations is

y = Bα +Xβ + u,

whereB = IN⊗ι, IN isN×N identity matrix, and⊗ is the Kronecker product. Given
that the number of potential predictors K can be large, additional regularization can
improve the predictive performance in small samples. To that end, we take advantage
of the sg-LASSO regularization, suggested by Babii, Ghysels, and Striaukas (2022).

The fixed effects sg-LASSO estimator ρ̂ = (α̂⊤, β̂⊤)⊤ solves

min
(a,b)∈RN+p

∥y −Ba−Xb∥2NT + 2λΩ(b), (2)

where Ω is the sg-LASSO regularizing functional. It is worth stressing that the design
matrix X does not include the intercept and that we do not penalize the fixed effects
which are typically not sparse. In addition, ∥.∥2NT = |.|2/(NT ) is the empirical norm
and

Ω(b) = γ|b|1 + (1− γ)∥b∥2,1,

is a regularizing functional. It is a linear combination of the ℓ1 LASSO and ℓ2,1
group LASSO norms. Note that for a group structure G described as a partition
of [p] = {1, 2, . . . , p}, the group LASSO norm is computed as ∥b∥2,1 =

∑
G∈G |bG|2,

while |.|q denotes the usual ℓq norm. The group LASSO penalty encourages sparsity
between groups whereas the ℓ1 LASSO norm promotes sparsity within groups and
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allows us to learn the shape of the MIDAS weights from the data. The parameter
γ ∈ [0, 1] determines the relative weights of the ℓ1 (sparsity) and the ℓ2,1 (group
sparsity) norms, while the amount of regularization is controlled by the regularization
parameter λ ≥ 0.

In Section 1, we called our approach structured ML because the group structure
allows us to embed the time series structure of the data. More specifically, these
structures are represented by groups covering lagged dependent variables and groups
of lags for a single (high-frequency) covariate. Throughout the paper, we assume
that groups have fixed size, and the group structure is known by the econometrician.
Both are reasonable assumptions to make in the context of our empirical application.

For pooled regressions, we assume that all entities share the same intercept pa-
rameter α1 = · · · = αN = α. The pooled sg-LASSO estimator ρ̂ = (α̂, β̂⊤)⊤ solves

min
r=(a,b)∈R1+p

∥y − aι−Xb∥2NT + 2λΩ(r). (3)

Pooled regressions are attractive since the effective sample size NT can be huge, yet
the heterogeneity of individual time series may be lost. If the underlying series have
a substantial heterogeneity over i ∈ [N ], then taking this into account might reduce
the projection error and improve the predictive accuracy.

Babii, Ball, Ghysels, and Striaukas (2022) provide the theoretical analysis of pre-
dictive performance of regularized panel data regressions with the sg-LASSO regu-
larization, including as special cases (a) standard LASSO, (b) group LASSO regular-
izations as well as (c) generic high-dimensional panels not involving mixed frequency
data. Finally, Babii, Ball, Ghysels, and Striaukas (2022) also develop the debiased
inferential methods and Granger causality tests for pooled panel data regressions.

3 Monte Carlo experiments

It is not clear that the aforementioned theory is of practical use in the context of
nowcasting using modestly sized samples of data. For this reason, we investigate
in this section the finite sample nowcasting performance of the machine learning
methods covered so far. We consider the standard (unstructured) elastic net with
UMIDAS (called Elnet-U), where UMIDAS refers to unconstrained MIDAS proposed
by Foroni, Marcellino, and Schumacher (2015) in a classic non-ML context, and sg-
LASSO with MIDAS. Both methods require selecting two tuning parameters λ and
γ. In the case of sg-LASSO, γ is the relative weight of LASSO and group LASSO
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penalties while in the case of the elastic net γ interpolates between LASSO and ridge.
In both cases we report results on a grid γ ∈ {0, 0.2, . . . , 1}.

In addition to evaluating the performance over the grid of γ tuning parameter
values, we need to select the λ tuning parameter. To do so, we consider several
approaches. First, we adapt the K-fold cross-validation to the panel data setting.
To that end, we resample the data by blocks respecting the time-series dimension
and creating folds based on cross-sectional units instead of the pooled sample. We
use the 5-fold cross-validation both in the simulation experiments and the empirical
application. We also consider the following three information criteria: BIC, AIC,
and corrected AIC (AICc) of Hurvich and Tsai (1989). Assuming that yi,t|xi,t are
i.i.d. draws from N(αi + x⊤i,tβ, σ

2), the log-likelihood of the sample is

L(α, β, σ2) ∝ − 1

2σ2

N∑
i=1

T∑
t=1

(yi,t − αi − x⊤i,tβ)
2.

Then, the BIC criterion is

BIC =
∥y − µ̂−Xβ̂∥2NT

σ̂2
+

log(NT )

NT
× df,

where df denotes the degrees of freedom, σ̂2 is a consistent estimator of σ2, µ̂ = α̂ι
for the pooled regression, and µ̂ = Bα̂ for fixed effects regression. The degrees of
freedom are estimated as d̂f = |β̂|0+1 for the pooled regression and d̂f = |β̂|0+N for
the fixed effects regression, where |.|0 is the ℓ0-norm defined as a number of non-zero
coefficients; see Zou, Hastie, and Tibshirani (2007) for more details. The AIC is
computed as

AIC =
∥y − µ̂−Xβ̂∥2NT

σ̂2
+

2

NT
× d̂f ,

and the corrected Akaike information criteria is

AICc =
∥y − µ̂−Xβ̂∥2NT

σ̂2
+

2d̂f

NT − d̂f − 1
.

The AICc is typically a better choice when p is large relative to the sample size. We
report the results for each of the tuning parameter selection criteria for λ, along the
grid choice for γ.
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3.1 Simulation Design

To assess the predictive performance of pooled panel data models, we simulate the
data from the following DGP with a quarterly/monthly frequency mix in mind and
k̄max = kmax with nH

k = nH ∀ k :

yi,t|τ = α +
K∑
k=1

k̄−1
max

k̄max−1∑
j=0

ω(j/nH ; βk)xi,τ−j/nH ,k + ui,t|τ ,

where i ∈ [N ], t ∈ [T ], α is the common intercept, k̄−1
max

∑k̄max−1
j=0 ω(j/nk; βk) the

weight function for k-th high-frequency covariate and the error term is either ui,t|τ ∼i.i.d.

N(0, 1) or ui,t|τ ∼i.i.d. student-t(5).

We are interested in a quarterly/monthly data mix, and use four quarters of
data for the high-frequency regressors which covers 12 high-frequency lags for each
regressor. In terms of information sets we start with τ = t− 1, which corresponds to
a prediction setting and then have τ = t− 1+ 1/3, i.e. nowcasting with one month’s
worth of information. We set the number of relevant high-frequency regressorsK = 6.
The high-frequency regressors are generated as K i.i.d. realizations of the univariate
autoregressive (AR) process xh = ρxh−1 + εh, where ρ = 0.6 and either εh ∼i.i.d.

N(0, 1) or εh ∼i.i.d. student-t(5), where h denotes the high-frequency sampling. We
rely on a commonly used weighting scheme in the MIDAS literature, namely ω(s; βk)
for k = 1, 2, . . . , 6 are determined by beta densities respectively equal to Beta(1, 3)
for k = 1, 4, Beta(2, 3) for k = 2, 5, and Beta(2, 2) for k = 3, 6; see Ghysels, Sinko,
and Valkanov (2007) or Ghysels and Qian (2019), for further details. The MIDAS
regressions are estimated using Legendre polynomials of degree L = 3.

We consider DGPs featuring pooled panels and fixed effects. For the pooled panel
regression DGPs we simulate the intercepts as α ∼ Uniform(−4, 4). For the fixed
effects models the individual fixed effects are simulated as αi ∼i.i.d Uniform(−4, 4)
and are kept fixed throughout the experiment.

For τ = t−1, the Baseline scenario, in the estimation procedure we add 24 noisy
covariates which are generated in the same way as the relevant covariates, use 4
low-frequency lags and the error terms ui,t|τ and εh are Gaussian. In the student-t(5)
scenario we replace the Gaussian error terms with a student-t(5) distribution while
in the large dimensional scenario we add 94 noisy covariates. For each scenario, we
simulate N = 25 i.i.d. time series of length T = 50; next we increase the cross-
sectional dimension to N = 75 and time series to T = 100.

Finally, for τ = t − 1 + 1/3 the thought experiment in the simulation design is
one where the first high-frequency observations during low frequency t are available.
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The nowcaster of course does not know which of the covariates are relevant nor does
she know the parameters of the prediction rule. We will call this scheme “one-step
ahead” nowcasts.

3.2 Simulation results

Tables 1 and 2 cover the average mean squared forecast errors (MSFE) for one-step
ahead nowcasts for the three simulation scenarios. We report results for sg-LASSO
with MIDAS weights (left block) and elastic net with UMIDAS (right block) using
both pooled panel models (Table 1) and fixed effects ones (Table 2). We report
results for the best choice of the γ tuning parameter.1

Firstly, structured sg-LASSO-MIDAS consistently outperforms unstructured Elnet-
U for all DGPs and in both pooled and fixed effects cases. The most significant
discrepancy between the two methods is observed in situations with small N and
small T, specifically when N = 25 and T = 50. As either N or T increases, this
gap gradually diminishes. When comparing the results of pooled and fixed effects,
it becomes evident that the difference between the two approaches — structured sg-
LASSO-MIDAS versus Elnet UMIDAS — widens further in the case of fixed effects
with student-t(5) data. This indicates that our structured approach yields higher
quality estimates for the fixed effects and thus more accurate nowcasts.

In the case of sg-LASSO-MIDAS, the best performance is achieved for γ /∈ {0, 1}
for both pooled panel data and fixed effects cases, while γ = 0, i.e. ridge regression,
seems to be dominated by estimators that γ /∈ {0, 1} in both pooled and fixed effects
cases. For the student-t(5) and large dimensional DGP, we observe a decrease in
the performance for all methods. However, the decrease in the performance is larger
for the student-t(5) DGP, revealing that heavy-tailed data have — as expected — a
stronger impact on the performance of the estimators.

For the pooled panel data case, increasing N from 25 to 75 seems to have a larger
positive impact on the performance than an increase in the time-series dimension
from T = 50 to T = 100. The difference appears to be larger for student-t(5) and
large dimensional DGPs and/or for the elastic net case. Turning to the fixed effects
results, the differences seem to be even sharper, in particular for student-t(5) and
large dimensional DGPs.

When comparing the results across the different model selection methods, i.e.,
cross-validation and the three information criteria, we find that almost always cross-

1Results for the grid of γ ∈ {0.0, 0.2, . . . , 1.0} are reported in the Online Appendix Tables OA.1-
OA.3.
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sg-LASSO Elnet-U

N/T = 25/50 75/50 25/100 25/50 75/50 25/100

Panel A. Baseline
CV 1.191 1.157 1.168 1.213 1.158 1.172
BIC 1.270 1.175 1.202 1.384 1.211 1.247
AIC 1.234 1.160 1.187 1.273 1.172 1.213
AICc 1.237 1.161 1.188 1.279 1.172 1.217

Panel B. Student-t(5)

CV 1.280 1.245 1.248 1.299 1.243 1.256
BIC 1.389 1.274 1.293 1.570 1.317 1.367
AIC 1.345 1.259 1.272 1.411 1.283 1.298
AICc 1.344 1.259 1.273 1.412 1.283 1.300

Panel C. Large-dimensional

CV 1.204 1.160 1.185 1.255 1.165 1.188
BIC 1.273 1.175 1.214 1.409 1.208 1.289
AIC 1.259 1.166 1.191 1.350 1.198 1.232
AICc 1.260 1.167 1.192 1.353 1.200 1.232

Table 1: The table reports the MSFE for nowcasting accuracy for the pooled estimator
for the Baseline (Panel A), student-t(5) (Panel B), and large-dimensional (Panel C) DGPs
for the sg-LASSO-MIDAS (rows sg-LASSO) and elastic net UMIDAS (rows Elnet-U). We
vary the cross-sectional dimension N ∈ {25, 75} and time series dimension T ∈ {50, 100}.
We report results for 5-fold cross-validation, BIC, AIC, AICc information criteria λ tuning
parameter calculation methods and for the best choice of γ tuning parameter.
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sg-LASSO Elnet-U

N/T = 25/50 75/50 25/100 25/50 75/50 25/100

Panel A. Baseline
CV 1.198 1.170 1.164 1.245 1.183 1.184
BIC 1.304 1.202 1.213 1.537 1.259 1.313
AIC 1.282 1.192 1.196 1.380 1.222 1.237
AICc 1.284 1.193 1.196 1.284 1.193 1.196

Panel B. Student-t(5)

CV 1.278 1.256 1.248 1.329 1.270 1.271
BIC 1.437 1.306 1.310 1.694 1.367 1.404
AIC 1.389 1.292 1.294 1.478 1.316 1.342
AICc 1.393 1.293 1.295 1.495 1.316 1.348

Panel C. Large-dimensional

CV 1.214 1.170 1.172 1.282 1.197 1.193
BIC 1.344 1.213 1.229 1.662 1.298 1.342
AIC 1.300 1.243 1.202 1.404 1.384 1.235
AICc 1.301 1.205 1.204 1.405 1.247 1.238

Table 2: The table reports the MSFE for nowcasting accuracy for the fixed effects estimator
for the Baseline (Panel A), student-t(5) (Panel B), and large-dimensional (Panel C) DGPs
for the sg-LASSO-MIDAS (rows sg-LASSO) and elastic net UMIDAS (rows Elnet-U). We
vary the cross-sectional dimension N ∈ {25, 75} and time series dimension T ∈ {50, 100}.
We report results for 5-fold cross-validation, BIC, AIC, AICc information criteria λ tuning
parameter calculation methods and for the best choice of γ tuning parameter.
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validation leads to smaller prediction errors in both pooled and fixed effects panel
data cases. Notably, the gains appear to be larger for the large N and T values.
Comparing BIC, AIC, and AICc information criteria, the results appear to be similar
for AIC and AICc across DGPs and different sample sizes, while the BIC performance
is slightly worse than AIC and AICc.

4 Nowcasting price-earnings ratios

Ball and Ghysels (2018), Carabias (2018) and Babii, Ball, Ghysels, and Striaukas
(2022) documented that analysts make systematic and predictable errors in their P/E
forecasts. We therefore consider nowcasting the P/E ratios using a set of predictors
that are sampled at mixed frequencies for a large cross-section of firms.

A natural question one may ask: should we nowcast P/E ratio directly or it’s
components. We, therefore, decompose the (log of) the P/E ratio for firm i as
follows:

pei,t+1 ≡ log(Pi,t+1/Ei,t+1) = log((Pi,t+1/Pi,t)/(Ei,t+1/Pi,t))

= ri,t+1 − log((Ei,t+1/E
a
i,t+1|t)/(Pi,t/E

a
i,t+1|t))

= ri,t+1 − eai,t+1|t + log(Pi,t/E
a
i,t+1|t) (4)

where ri,t+1 is the log return from t+1 to t for firm i, Ea
i,t+1|t the analyst’s prediction

at time t pertaining to t + 1 earnings, and eai,t+1|t ≡ log(Ei,t+1) − log(Ea
i,t+1|t) is the

log earnings forecast error of analysts pertaining to their end of period t prediction
for t+1. Finally, log(Pi,t/E

a
i,t+1|t) is perfectly known at time t. The above defines an

additive decomposition of the log P/E ratio into the return for firm i and the analyst
prediction error. Therefore, nowcasting the log P/E ratio could also be achieved via
nowcasting its two components. The decomposition corresponds to the distinction
between analyst assessments of firm i’s earnings and market/investor assessments of
the firm.

There is a considerable literature on using machine learning to predict returns, see
e.g. Rapach, Strauss, and Zhou (2010), Kim and Swanson (2014), Gu, Kelly, and Xiu
(2020), D’Hondt, De Winne, Ghysels, and Raymond (2020), among others. Here we
are dealing with a slightly modified setting where we are nowcasting quarterly returns
with information during quarter t + 1. Nevertheless, prediction and nowcasting are
closely related. The second component, eai,t+1|t has been explored by Babii, Ball,

Ghysels, and Striaukas (2022), who revisit a topic raised by Ball and Ghysels (2018)
and Carabias (2018), and confirmed in a rich data setting that analysts tend to focus
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on their firm/industry when making earnings predictions while not fully taking into
account the impact of macroeconomic events. Put differently, one can forecast and
nowcast analyst prediction errors.

It should also parenthetically be noted that equation (4) can be rewritten as a
decomposition of returns, namely:

ri,t+1 = pei,t+1 + eai,t+1|t + log(Pi,t/E
a
i,t+1|t) (5)

which can be viewed as an alternative decomposition of returns compared to Ferreira
and Santa-Clara (2011). They propose forecasting separately the three components
of stock market returns: (a) the dividend price ratio, (b) earnings growth, and (c)
price-to-earnings ratio growth. Ferreira and Santa-Clara (2011) argue that predict-
ing the separate components yields better return predictions compared to the usual
models producing direct forecasts of the latter. They estimate the expected earnings
growth using a 20-year moving average of the growth in earnings per share. The
expected dividend price ratio is estimated by the current dividend price ratio. This
implicitly assumes that the dividend price ratio follows a random walk. While our
application is different in many regards, the arguments being considered are simi-
lar. It is worth reminding ourselves that if the nowcast p̂ei,t+1 is constructed from
individual component nowcasts, then

MSE(p̂ei,t+1) = MSE(r̂i,t+1) + MSE(êai,t+1|t)− 2E
[
(ri,t+1 − r̂i,t+1)(e

a
i,t+1|t − êai,t+1|t)

]
(6)

Hence, depending on the co-movements between returns for firm i, ri,t+1 and analyst
earning prediction errors eai,t+1|t, we are better off to directly predict pei,t+1 or its
components. If the latter are positively correlated, then we are better off direct
forecasting is preferred.

Given the aforementioned decomposition, we are interested in the following LHS
variables: pei,t+1, ri,t+1 and eai,t+1|t. First, we estimate the individual sg-LASSO MI-
DAS regressions for each firm i = 1, . . . , N , namely:

yi = ιαi + xiβi + ui,

where the firm-specific predictions are computed as ŷi,t+1 = α̂i + x⊤i,t+1β̂i. As noted
in Section 2, xi contains lags of the low-frequency target variable and high-frequency
covariates to which we apply Legendre polynomials of degree L = 3.

Next, we estimate the following pooled and fixed effects sg-LASSO MIDAS panel
data models

y = αι+Xβ + u Pooled

y = Bα +Xβ + u Fixed Effects
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and compute predictions as

ŷi,t+1 = α̂ + x⊤i,t+1β̂ Pooled

ŷi,t+1 = α̂i + x⊤i,t+1β̂ Fixed Effects.

Once we compute the forecast for the log of P/E ratio (pei,t+1), log returns (ri,t+1)
and log earnings forecast error (eai,t+1|t), we compute the final prediction accuracy

metrics by either taking directly log P/E nowcast or the sum of its components, i.e.,
Ŝ = r̂i,t+1 − êai,t+1|t + log(Pi,t/E

a
i,t+1|t).

We benchmark firm-specific and panel data regression-based nowcasts against
two simple alternatives. First, we compute forecasts for the RW model as

ŷi,t+1|t = yi,t.

Second, we consider predictions of P/E implied by analysts’ earnings nowcasts using
the information up to time t+ 1, i.e.

ŷi,t+1|t = ȳai,t+1|t,

where the predicted/nowcasted log of P/E ratio is based on consensus earnings fore-
casts pertaining to the end of the t + 1 quarter using the stock price at the end of
quarter t. To measure the forecasting performance, we compute the mean squared
forecast errors (MSE) for each method. Let ȳi = (yi,Tis+1, . . . , yi,Tos)

⊤ represent the
out-of-sample realized P/E ratio values, where Tis and Tos denote the last in-sample
observation for the first prediction and the last out-of-sample observation respec-
tively, and let ŷi = (ŷi,tis+1, . . . , ŷi,tos) collect the out-of-sample forecasts. Then, the
mean squared forecast errors are computed as

MSE =
1

N

N∑
i=1

1

T − Tis + 1
(ȳi − ŷi)

⊤(ȳi − ŷi).

We look at 210 US firms and use 24 predictors, including traditional macro and
financial series as well as non-traditional series from textual analysis of financial
news. We apply (a) single regression individual firm high-dimensional regressions,
(b) pooled and (c) individual fixed effects sg-LASSO MIDAS panel data models and
report results for several choices of the tuning parameters. We compare these three
type of models with several benchmarks, which include a random walk (RW) model
and analysts’ consensus forecasts. The remainder of the section is structured as
follows. We start with a short review of the data followed by a summary of the
empirical results.
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4.1 Data description

The full sample consists of observations between the 1st of January, 2000 and the 30th

of June, 2017. Due to the lagged dependent variables in the models, our effective
sample starts in the third fiscal quarter of 2000. We use the first 25 observations
for the initial sample, and use the remaining 42 observations for evaluating the
out-of-sample forecasts, which we obtain by using an expanding window forecasting
scheme. We collect data from CRSP and I/B/E/S to compute the quarterly P/E
ratios and firm-specific financial covariates; RavenPack is used to compute daily
firm-level textual-analysis-based data; real-time monthly macroeconomic series are
from the FRED-MD dataset, see McCracken and Ng (2016) for more details; FRED
is used to compute daily financial markets data and, lastly, monthly news atten-
tion series extracted from the Wall Street Journal articles are retrieved from Bybee,
Kelly, Manela, and Xiu (2021).2 Online Appendix Section OA.2 provides a detailed
description of the data sources.3

Our target variable is the P/E ratio for each firm. To compute it, we use CRSP
stock price data and I/B/E/S earnings data. Earnings data are subject to release
delays of 1 to 2 months depending on the firm and quarter. Therefore, to reflect the
real-time information flow, we compute the target variable using stock prices that are
available in real-time. We also take into account that different firms have different
fiscal quarters, which also affects the real-time information flow.

For example, suppose for a particular firm the fiscal quarters are at the end of
the third month in a quarter, i.e. end of March, June, September, and December.
The consensus forecast of the P/E ratio is computed using the same end-of-quarter
price data which is divided by the earnings consensus forecast value. The consensus
is computed by taking all individual prediction values up to the end of the quarter
and aggregating those values by taking either the mean or the median. To compute
the target variable, we adjust for publication lags and use prices of the publication
date instead of the end of fiscal quarter prices. More precisely, suppose we predict
the P/E ratio for the first quarter. As noted earlier, earnings are typically published
with 1 to 2 months delay; say for a particular firm the data is published on the 25th
of April. In this case, we record the stock price for the firm on 25th of April, and
divide it by the earnings announced on that date.

2The dataset is publicly available at http://www.structureofnews.com/.
3In particular, firm-level variables, including P/E ratios, are described in Online Appendix Table

OA.4, and the other predictor variables in Online Appendix Table OA.5. The list of all firms we
consider in our analysis appears in Online Appendix Table OA.6.
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4.2 Models and main results

To simplify the exposition, we denote y as one of the three target variables we con-
sider. The main findings from our analysis are presented in Table 3. Column p̂ei,t+1

reports results for directly nowcasting the log P/E ratio, column Ŝ reports the results
of nowcasting and summing up the components, column ri,t+1 reports results for the
log return component and column êai,t+1|t reports results for the log earnings forecast
error of analysts component. Row RW reports results for the random walk, while
row Consensus for the median consensus nowcast. Panels Individual, Pooled and
Fixed effects report results for different panel data models relative to the consensus
MSE (columns p̂ei,t+1 and Ŝ) and for the components (columns ri,t+1 and ê

a
i,t+1|t) we

report ratios relative to the RW MSE since there are obviously no concensus series
notably for the analyst forecast errors.

Nowcasting Performance

In light of the simulation evidence, we report the empirical results using cross-
validation in Table 3 and provide the full set of results in Online Appendix Table
OA.7. The entries in the top panel of Table 3 reveal that predictions based on
analyst consensus exhibit significantly higher mean squared forecast errors (MSEs)
compared to model-based predictions since all the ratios with respect to the con-
census are less than one (see first two columns). These model-based predictions
involve either direct log P/E ratio nowcasts (first column) or their individual com-
ponents (second column). Since the MSE for RW and concensus are quite similar,
this also implies that RW predictions are outperformed by the model-based ones.
The substantial improvement in the accuracy of model-based predictions compared
to analyst-based predictions underscores the value of employing machine learning
techniques for nowcasting log P/E ratios. Across various machine learning methods,
including single-firm and panel data regressions, we consistently observe enhanced
performance. When comparing the first and second columns, which correspond to
direct log P/E ratio nowcasts versus those based on its components, we observe a
substantial enhancement in prediction accuracy when using the individual compo-
nents. This improvement is consistently evident across individual, pooled, and fixed
effects regression models. To shed light on these findings, we computed the pooled
correlation between returns and earnings for the entire sample, i.e. Corr(ri,t+1, e

a
i,t+1|t)

= -0.206. The correlation indicates a (weak) negative relationship between returns
and earnings. Consequently, the prediction errors of each component tend to off-
set each other, resulting in more accurate aggregated nowcasts (recall equation (6)).
The last two columns of Table 3 present the prediction results for these components.
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p̂ei,t+1 Ŝ r̂i,t+1 êai,t+1|t

All firms

RW 1.355 0.054 0.194
Consensus 1.305

Individual
0.905 0.890 1.088 0.848

DM p-val RW 0.117 0.115 0.181 0.090
DM p-val Cons. 0.156 0.131

Pooled
0.894 0.790 0.964 0.799

DM p-val RW 0.060 0.023 0.128 0.021
DM p-val Cons. 0.075 0.053

Fixed effects
0.814 0.793 0.971 0.803

DM p-val RW 0.051 0.033 0.164 0.032
DM p-val Cons. 0.078 0.063

With single CCI outlier removed (see Figure 2)

RW 1.333 0.053 0.173
Consensus 1.275

Individual
0.978 0.790 1.001 0.812

DM p-val RW 0.585 0.027 0.912 0.081
DM p-val Cons. 0.606 0.034

Pooled
0.777 0.768 0.943 0.788

DM p-val RW 0.025 0.004 0.103 0.018
DM p-val Cons. 0.029 0.006

Fixed effects
0.782 0.767 0.954 0.783

DM p-val RW 0.028 0.004 0.119 0.021
DM p-val Cons. 0.030 0.006

Table 3: Column p̂ei,t+1 reports results for directly nowcasting the log P/E ratio, Ŝ for nowcasting
and summing up the components, ri,t+1 for the log return and êai,t+1|t for the log earnings forecast
error of analysts. RW is for the random walk, while Consensus is the median consensus nowcast.
Panels Individual, Pooled and Fixed effects report results for models relative to the consensus MSE
(p̂ei,t+1 and Ŝ) and for the components (ri,t+1 and êai,t+1|t) relative to the RW MSE. DM is the

Diebold and Mariano (1995) test statistic p-values using one-sided critical values.
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We observe that analyst earnings prediction errors appear to be more predictable
than those of log returns. We also report Diebold and Mariano (1995) test statistic
p-values comparing each model against the RW and consensus benchmarks, pool-
ing all the nowcasting errors across firms. Using one-sided test critical values we
observe that our models outperform both the RW and consensus benchmarks, par-
ticularly when we use the component approach. While we cannot compare the p̂ei,t+1

component with the consensus, judging by the RW benchmark it is clear that the
second component is the most important in terms of nowcasting gains. When we
use individual MIDAS regressions the evidence is less compelling, underscoring the
importance of using panel data models.4

Sparsity Patterns

Figure 1 illustrates the sparsity patterns of selected covariates for the most ef-
fective methods in predicting either log P/E ratios (Panel a) or their components
(Panels b and c). It is worth noting that the sparsity patterns differ significantly
across the three panels. For instance, firm volatility is often chosen as a relevant co-
variate across all targets, albeit not consistently throughout the entire out-of-sample
period. In the case of log P/E ratios, news series related to earnings are frequently
selected, along with firm and market volatility series. Conversely, for log returns, a
denser pattern of covariate selection is observed, distinct from the other two cases.
Interestingly, none of the news-based firm series are chosen for this target. Regarding
log analyst earnings forecast errors, macroeconomic series such as the unemployment
rate, short-term rates, and TED rate are frequently selected. Moreover, unlike log
P/E ratios and returns, news-based firm series occasionally appear in the selected
covariates for this target. The fact that macroeconomic series are drivers for now-
casting the eai,t+1|t component is a confirmation of the findings reported in Ball and

Ghysels (2018), Carabias (2018) and Babii, Ball, Ghysels, and Striaukas (2022).

Figure 2 depicts the histogram of mean squared errors (MSEs) across firms. No-
tably, a substantial proportion of firms (approximately 60%) exhibit low MSE values,
indicating a high level of prediction accuracy. However, there are a few firms for
which the MSEs are relatively larger, suggesting lower prediction performance for
these specific cases. The largest MSE is for Crown castle international corporation
(CCI) which appears as a strong outlier.

4We also experimented with the forecast combination of MIDAS regressions used by Ball and
Ghysels (2018) and found them to be inferior to the individual MIDAS ML regressions as well as
the panel data models. We therefore refrain from reporting the details here.
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(c) Best model for êai,t+1|t.

Figure 1: Sparsity patterns.

Removing the single outlier firm has a dramatic impact on the nowcasting perfor-
mance evaluation as shown in the lower panel of Table 3. We now have very strong
evidence that the panel regression models dominate analyst predictions. Again the
component nowcasts are the best, but even the individual regression models do sig-
nificantly better when the component specification is used.

Daily Updates of Nowcasts

Our framework allows us to go beyond providing quarterly nowcasts and gen-
erate daily updates of earnings series. Leveraging the daily influx of information
throughout the quarter, we continuously re-estimate our models and produce now-
cast updates as soon as new data becomes available. In Figure 3, we present the
distribution of Mean Squared Errors (MSEs) across firms for five distinct nowcast
horizons: 20-day, 15-day, 10-day, and 5-day ahead, as well as the end of the quarter.
We report the best model based on Table 3. Notably, as the horizons become shorter,
both the median and upper quartile of MSEs decrease. Therefore, updating nowcasts
with daily information appears to significantly enhance the prediction performance
of log earnings ratios. The largest errors persist for the same firm, CCI.

Grouped Fixed Effects based on
Fama-French Industry Classification
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Figure 2: Histogram of mean squared errors.

The sg-LASSO estimator we employ in our study is well-suited for incorporating
grouped fixed effects. This approach involves grouping firm-specific intercepts based
on either statistical procedures or economic reasoning, as outlined in Bonhomme and
Manresa (2015). In our analysis, we utilize the Fama French industry classification to
form 10 distinct groups for grouping fixed effects. Rather than assuming a common
fixed effect for all firms within a group, we apply a group penalty to the fixed effects
of firms belonging to the same industry. This allows us to capture industry-specific
heterogeneity while avoiding overfitting.

We present the findings in Table 4, which highlight several key observations. Sim-
ilar to previous analyses, our results suggest that predicting individual components
of the log price-earnings ratio leads to more accurate aggregate nowcasts compared
to a direct nowcast approach. Furthermore, we observe that the use of group fixed
effects improves the accuracy of our nowcasts when forecasting individual compo-
nents. This can be seen in column 2 of both Tables 3 and 4. Comparatively, when
considering the best tuning parameter choice, grouped fixed effects outperform other
panel models, including the pooled panel model. Therefore, our findings suggest
that grouped fixed effects strike a better balance between capturing heterogeneity
and pooled parameters, resulting in more accurate nowcast predictions. These re-
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Figure 3: Distribution of MSEs of the best performing model in Table 3. Models are
re-estimated for each horizon. The best model based on Table 3 is reported.

sults support the notion that incorporating group fixed effects enhances the overall
performance of our forecasting model.

In Figure 4, we present the distribution of (MSEs) across firms for five industries,
based on the best model specification from Table 4. The industries we focus on are
the ones with the highest number of firms in our sample. The results reveal varia-
tions in performance among different industries. Specifically, the firms categorized
as Consumer Durables exhibit the lowest accuracy in terms of the median MSE, al-
though the quartiles are comparatively lower compared to the other industries. On
the other hand, the nowcasts for firms in the Consumer Nondurables and Others cat-
egories demonstrate the highest accuracy at the median. However, it is important
to note that the largest errors occur within the firms classified as Others.

Nowcasting with Missing Data — Parameter Imputation Method

Next we address the challenge of missing earnings data, which can complicate
the analysis. We examine the performance of parameter imputation methods in
computing nowcasts, see, e.g, Brown, Ghysels, and Gredil (2023), even when earnings
and/or earnings forecasts are missing for certain observations in the sample. We
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p̂ei,t+1 Ŝ
Group fixed effects

CV 0.862 0.789
BIC 0.834 0.789
AIC 0.842 0.791
AICc 0.842 0.790

Table 4: Nowcasting results. Column p̂ei,t+1 reports results for directly nowcasting

the log P/E ratio and the column Ŝ reports the results of nowcasting and summing
up the components. Results are reported relative to the Consensus nowcasts that
appear in Table 3.

identify a subset of 117 firms for which at least one earnings observation is available
in our out-of-sample period, and for which we have matched daily news data. To
handle missing data, we match these firms with missing observations to firms in
our main sample using the Fama French industry classification. We then utilize the
parameter estimates obtained from the best group fixed effects model, as shown in
Table 4, to compute the nowcasts of log earnings ratios, either directly or based on
its components. The results of this analysis appear in Table 5.

Firstly, the results obtained through parameter imputation support the conclu-
sion that nowcasting the components of the log earnings ratio yields higher quality
predictions. This indicates that incorporating the individual components of the ra-
tio improves the accuracy of the nowcasts. Secondly, the panel models with the
parameter imputation method outperform the analyst consensus nowcasts in terms
of prediction accuracy. This suggests that employing machine learning panel data
models along with parameter imputation could be a straightforward yet effective
approach in situations where earnings data is not available. Overall, these findings
highlight the potential benefits of leveraging machine learning techniques and im-
putation methods for improving nowcasting accuracy, particularly in cases where
earnings data may be missing.

5 Conclusions

This paper uses a new class of high-dimensional panel data nowcasting models with
dictionaries and sg-LASSO regularization which is an attractive choice for the pre-
dictive panel data regressions, where the low- and/or the high-frequency lags define
a clear group structure. Our empirical results showcase the advantages of using reg-
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Figure 4: Distribution of MSEs for five industries based on Fama French classifica-
tion. The reported resutls are based on the best model specification from Table 4.

ularized panel data regressions for nowcasting corporate earnings either directly or
using a decomposition which separates stock market return predictions and analyst
assessments of a firm’s performance. While nowcasting earnings is a leading exam-
ple of applying panel data MIDAS machine learning regressions, one can think of
many other applications of interest in finance. Beyond earnings, analysts are also
interested in sales, dividends, etc. Our analysis can also be useful for other areas of
interest, such as regional and international panel data settings.
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p̂ei,t+1 Ŝ
Consensus 1.605

CV 0.883 0.753
BIC 0.877 0.756
AIC 0.883 0.754
AICc 0.883 0.753

Table 5: Nowcasting results — parameter imputation method. Column p̂ei,t+1 re-

ports results for directly nowcasting the log P/E ratio and the column Ŝ reports
the results of nowcasting and summing up the components. Row Consensus for the
median consensus nowcast. Panels Individual, Pooled and Fixed effects report results
for different panel data models relative to the consensus MSE.
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ONLINE APPENDIX

OA.1 Additional simulation results

Pooled panel data Fixed effects

N/T γ = 0 0.2 0.4 0.6 0.8 1 γ = 0 0.2 0.4 0.6 0.8 1

Cross-validation

25/50 1.194 1.191 1.192 1.200 1.212 1.207 1.202 1.200 1.198 1.199 1.205 1.210
sg-LASSO 75/50 1.160 1.162 1.159 1.157 1.165 1.161 1.171 1.171 1.170 1.171 1.173 1.174

25/100 1.175 1.174 1.175 1.172 1.168 1.183 1.166 1.165 1.165 1.164 1.166 1.171

25/50 1.334 1.216 1.213 1.213 1.214 1.214 1.370 1.248 1.245 1.245 1.246 1.245
elnet-U 75/50 1.209 1.160 1.158 1.158 1.158 1.158 1.236 1.186 1.184 1.183 1.183 1.183

25/100 1.242 1.172 1.172 1.172 1.172 1.173 1.255 1.184 1.184 1.184 1.184 1.185

BIC

25/50 1.272 1.270 1.273 1.289 1.315 1.357 1.310 1.304 1.317 1.346 1.410 1.471
sg-LASSO 75/50 1.177 1.175 1.177 1.180 1.180 1.199 1.202 1.202 1.208 1.209 1.222 1.282

25/100 1.207 1.202 1.203 1.205 1.223 1.260 1.213 1.213 1.220 1.219 1.247 1.307

25/50 1.524 1.411 1.388 1.385 1.384 1.385 1.537 1.575 1.595 1.611 1.626 1.639
elnet-U 75/50 1.236 1.226 1.216 1.213 1.211 1.211 1.259 1.274 1.276 1.278 1.279 1.280

25/100 1.298 1.255 1.247 1.248 1.248 1.249 1.313 1.318 1.318 1.318 1.320 1.320

AIC

25/50 1.252 1.247 1.242 1.234 1.245 1.265 1.288 1.282 1.283 1.287 1.284 1.303
sg-LASSO 75/50 1.167 1.165 1.163 1.160 1.166 1.166 1.199 1.196 1.197 1.198 1.192 1.205

25/100 1.193 1.190 1.191 1.196 1.187 1.200 1.200 1.196 1.196 1.202 1.209 1.208

25/50 1.524 1.282 1.274 1.273 1.273 1.274 1.537 1.388 1.381 1.380 1.378 1.378
elnet-U 75/50 1.236 1.179 1.174 1.173 1.172 1.172 1.259 1.222 1.223 1.222 1.222 1.222

25/100 1.298 1.213 1.215 1.216 1.215 1.215 1.313 1.255 1.243 1.240 1.238 1.237

AICc

25/50 1.255 1.248 1.244 1.237 1.246 1.270 1.291 1.284 1.285 1.290 1.291 1.307
sg-LASSO 75/50 1.168 1.165 1.164 1.161 1.166 1.167 1.200 1.197 1.197 1.199 1.193 1.205

25/100 1.193 1.190 1.191 1.196 1.188 1.201 1.200 1.196 1.196 1.202 1.210 1.210

25/50 1.524 1.286 1.279 1.280 1.208 1.281 1.537 1.410 1.396 1.390 1.388 1.387
elnet-U 75/50 1.236 1.179 1.174 1.173 1.172 1.172 1.259 1.227 1.226 1.226 1.225 1.225

25/100 1.298 1.217 1.219 1.218 1.218 1.218 1.313 1.257 1.244 1.240 1.238 1.237

Table OA.1: The table reports the MSFE for nowcasting accuracy for pooled and fixed
effects estimators for the baseline DGP for the sg-LASSO-MIDAS (rows sg-LASSO) and
elastic net UMIDAS (rows elnet-U). We vary the cross-sectional dimension N ∈ {25, 75}
and time series dimension T ∈ {50, 100}. We report results for 5-fold cross-validation, BIC,
AIC, AICc information criteria λ tuning parameter calculation methods and for a grid of
γ ∈ {0, 0.2, . . . , 1} tuning parameter.
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Pooled panel data Fixed effects

N/T γ = 0 0.2 0.4 0.6 0.8 1 γ = 0 0.2 0.4 0.6 0.8 1

Cross-validation

25/50 1.289 1.288 1.288 1.282 1.280 1.302 1.282 1.279 1.278 1.280 1.282 1.291
sg-LASSO 75/50 1.247 1.245 1.247 1.253 1.246 1.255 1.256 1.256 1.256 1.256 1.257 1.261

25/100 1.250 1.248 1.248 1.254 1.264 1.257 1.249 1.248 1.248 1.249 1.252 1.255

25/50 1.452 1.302 1.299 1.300 1.300 1.301 1.487 1.334 1.331 1.331 1.330 1.329
elnet-U 75/50 1.304 1.244 1.243 1.243 1.243 1.243 1.333 1.271 1.270 1.270 1.270 1.270

25/100 1.342 1.258 1.257 1.256 1.256 1.256 1.359 1.273 1.271 1.271 1.271 1.271

BIC

25/50 1.395 1.389 1.395 1.401 1.444 1.517 1.437 1.437 1.450 1.468 1.553 1.657
sg-LASSO 75/50 1.275 1.274 1.278 1.278 1.281 1.310 1.306 1.309 1.319 1.321 1.317 1.370

25/100 1.296 1.293 1.297 1.306 1.308 1.364 1.311 1.310 1.319 1.325 1.342 1.431

25/50 1.652 1.582 1.570 1.570 1.572 1.575 1.694 1.754 1.781 1.803 1.813 1.820
elnet-U 75/50 1.337 1.318 1.317 1.318 1.319 1.319 1.367 1.401 1.393 1.393 1.394 1.396

25/100 1.389 1.387 1.373 1.369 1.368 1.367 1.404 1.430 1.427 1.432 1.434 1.436

AIC

25/50 1.354 1.345 1.342 1.351 1.370 1.372 1.397 1.396 1.393 1.389 1.407 1.450
sg-LASSO 75/50 1.261 1.259 1.259 1.264 1.271 1.266 1.292 1.293 1.294 1.292 1.301 1.309

25/100 1.282 1.280 1.279 1.272 1.279 1.290 1.305 1.301 1.302 1.300 1.294 1.320

25/50 1.652 1.435 1.419 1.414 1.412 1.411 1.694 1.489 1.480 1.479 1.478 1.478
elnet-U 75/50 1.337 1.293 1.287 1.285 1.284 1.283 1.367 1.327 1.319 1.317 1.316 1.316

25/100 1.389 1.304 1.298 1.298 1.298 1.298 1.404 1.342 1.342 1.342 1.343 1.343

AICc

25/50 1.357 1.348 1.344 1.352 1.372 1.377 1.402 1.402 1.398 1.393 1.409 1.459
sg-LASSO 75/50 1.261 1.259 1.259 1.264 1.271 1.266 1.293 1.295 1.295 1.293 1.301 1.312

25/100 1.282 1.280 1.279 1.273 1.279 1.292 1.306 1.302 1.303 1.301 1.295 1.321

25/50 1.652 1.436 1.420 1.415 1.414 1.412 1.694 1.503 1.495 1.496 1.496 1.495
elnet-U 75/50 1.337 1.294 1.287 1.285 1.284 1.283 1.367 1.328 1.320 1.318 1.317 1.316

25/100 1.389 1.305 1.300 1.300 1.300 1.300 1.404 1.348 1.348 1.348 1.348 1.348

Table OA.2: The table reports the MSFE for nowcasting accuracy for pooled and fixed ef-
fects estimators for the student-t(5) DGP for the sg-LASSO-MIDAS (rows sg-LASSO) and
elastic net UMIDAS (rows elnet-U). We vary the cross-sectional dimension N ∈ {25, 75}
and time series dimension T ∈ {50, 100}. We report results for 5-fold cross-validation, BIC,
AIC, AICc information criteria λ tuning parameter calculation methods and for a grid of
γ ∈ {0, 0.2, . . . , 1} tuning parameter.
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Pooled panel data Fixed effects

N/T γ = 0 0.2 0.4 0.6 0.8 1 γ = 0 0.2 0.4 0.6 0.8 1

Cross-validation

25/50 1.208 1.207 1.204 1.207 1.226 1.249 1.217 1.214 1.215 1.218 1.225 1.242
sg-LASSO 75/50 1.168 1.168 1.168 1.160 1.161 1.178 1.171 1.170 1.170 1.173 1.180 1.187

25/100 1.188 1.185 1.187 1.194 1.186 1.199 1.173 1.172 1.172 1.174 1.176 1.181

25/50 1.291 1.263 1.257 1.255 1.255 1.255 1.292 1.290 1.285 1.283 1.283 1.282
elnet-U 75/50 1.259 1.170 1.167 1.166 1.165 1.165 1.273 1.204 1.199 1.198 1.197 1.197

25/100 1.258 1.196 1.190 1.189 1.189 1.188 1.999 1.199 1.196 1.194 1.194 1.193

BIC

25/50 1.273 1.274 1.278 1.295 1.336 1.408 1.358 1.344 1.353 1.374 1.443 1.505
sg-LASSO 75/50 1.176 1.175 1.177 1.184 1.200 1.234 1.215 1.213 1.218 1.218 1.237 1.305

25/100 1.226 1.218 1.217 1.214 1.227 1.273 1.232 1.229 1.236 1.240 1.267 1.332

25/50 1.524 1.428 1.409 1.412 1.413 1.417 1.689 1.675 1.662 1.670 1.682 1.689
elnet-U 75/50 1.359 1.229 1.215 1.211 1.209 1.208 1.306 1.298 1.299 1.301 1.302 1.303

25/100 1.304 1.297 1.209 1.209 1.289 1.290 1.414 1.372 1.349 1.343 1.342 1.342

AIC

25/50 1.263 1.259 1.264 1.272 1.264 1.285 1.307 1.300 1.300 1.315 1.343 1.380
sg-LASSO 75/50 1.175 1.172 1.174 1.176 1.166 1.185 1.250 1.246 1.245 1.243 1.250 1.261

25/100 1.195 1.191 1.191 1.200 1.217 1.216 1.210 1.205 1.202 1.203 1.222 1.251

25/50 1.527 1.381 1.361 1.354 1.351 1.350 1.559 1.458 1.421 1.411 1.406 1.404
elnet-U 75/50 1.359 1.201 1.200 1.199 1.199 1.198 1.401 1.400 1.385 1.384 1.384 1.392

25/100 1.301 1.252 1.239 1.235 1.233 1.232 1.314 1.255 1.241 1.238 1.236 1.235

AICc

25/50 1.264 1.260 1.264 1.274 1.267 1.286 1.312 1.301 1.302 1.316 1.347 1.390
sg-LASSO 75/50 1.175 1.172 1.174 1.176 1.167 1.185 1.209 1.205 1.205 1.212 1.224 1.228

25/100 1.195 1.192 1.192 1.200 1.218 1.218 1.211 1.206 1.204 1.203 1.222 1.263

25/50 1.524 1.390 1.364 1.358 1.354 1.353 1.559 1.460 1.422 1.413 1.408 1.405
elnet-U 75/50 1.359 1.203 1.202 1.201 1.200 1.200 1.306 1.271 1.255 1.250 1.248 1.247

25/100 1.302 1.252 1.239 1.235 1.233 1.232 1.314 1.256 1.242 1.239 1.238 1.238

Table OA.3: The table reports the MSFE for nowcasting accuracy for pooled and fixed
effects estimators for the large-dimensional DGP for the sg-LASSO-MIDAS (rows sg-
LASSO) and elastic net UMIDAS (rows elnet-U). We vary the cross-sectional dimension
N ∈ {25, 75} and time series dimension T ∈ {50, 100}. We report results for 5-fold cross-
validation, BIC, AIC, AICc information criteria λ tuning parameter calculation methods
and for a grid of γ ∈ {0, 0.2, . . . , 1} tuning parameter.
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OA.2 Data description

OA.2.1 Firm-level data

The full list of firm-level data is provided in Table OA.4. We also add two daily
firm-specific stock market predictor variables: stock returns and a realized variance
measure, which is defined as the rolling sample variance over the previous 60 days
(i.e. 60-day historical volatility).

OA.2.1.1 Firm sample selection

We select a sample of firms based on data availability. First, we remove all firms
from I/B/E/S which have missing values in earnings time series. Next, we retain
firms that we are able to match with CRSP dataset. Finally, we keep firms that we
can match with the RavenPack dataset.

OA.2.1.2 Firm-specific text data

We create a link table of RavenPack ID and PERMNO identifiers which enables
us to merge I/B/E/S and CRSP data with firm-specific textual analysis generated
data from RavenPack. The latter is a rich dataset that contains intra-daily news
information about firms. There are several editions of the dataset; in our analysis,
we use the Dow Jones (DJ) and Press Release (PR) editions. The former contains
relevant information from Dow Jones Newswires, regional editions of the Wall Street
Journal, Barron’s and MarketWatch. The PR edition contains news data, obtained
from various press releases and regulatory disclosures, on a daily basis from a variety
of newswires and press release distribution networks, including exclusive content from
PRNewswire, Canadian News Wire, Regulatory News Service, and others. The DJ
edition sample starts at 1st of January, 2000, and PR edition data starts at 17th of
January, 2004.

We construct our news-based firm-level covariates by filtering only highly relevant
news stories. More precisely, for each firm and each day, we filter out news that has
the Relevance Score (REL) larger or equal to 75, as is suggested by the RavenPack
News Analytics guide and used by practitioners, see for example Kolanovic and
Krishnamachari (2017). REL is a score between 0 and 100 which indicates how
strongly a news story is linked with a particular firm. A score of zero means that the
entity is vaguely mentioned in the news story, while 100 means the opposite. A score
of 75 is regarded as a significantly relevant news story. After applying the REL filter,
we apply a novelty of the news filter by using the Event Novelty Score (ENS); we
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keep data entries that have a score of 100. Like REL, ENS is a score between 0 and
100. It indicates the novelty of a news story within a 24-hour time window. A score
of 100 means that a news story was not already covered by earlier announced news,
while subsequently published news story score on a related event is discounted, and
therefore its scores are less than 100. Therefore, with this filter, we consider only
novel news stories. We focus on five sentiment indices that are available in both DJ
and PR editions. They are:

Event Sentiment Score (ESS), for a given firm, represents the strength of the
news measured using surveys of financial expert ratings for firm-specific events. The
score value ranges between 0 and 100 - values above (below) 50 classify the news as
being positive (negative), 50 being neutral.

Aggregate Event Sentiment (AES) represents the ratio of positive events re-
ported on a firm compared to the total count of events measured over a rolling
91-day window in a particular news edition (DJ or PR). An event with ESS > 50 is
counted as a positive entry while ESS < 50 as negative. Neutral news (ESS = 50) and
news that does not receive an ESS score does not enter into the AES computation.
As ESS, the score values are between 0 and 100.

Aggregate Event Volume (AEV) represents the count of events for a firm over
the last 91 days within a certain edition. As in AES case, news that receives a
non-neutral ESS score is counted and therefore accumulates positive and negative
news.

Composite Sentiment Score (CSS) represents the news sentiment of a given
news story by combining various sentiment analysis techniques. The direction of the
score is determined by looking at emotionally charged words and phrases and by
matching stories typically rated by experts as having short-term positive or negative
share price impact. The strength of the scores is determined by intra-day price reac-
tions modeled empirically using tick data from approximately 100 large-cap stocks.
As for ESS and AES, the score takes values between 0 and 100, 50 being the neutral.

News Impact Projections (NIP) represents the degree of impact a news flash
has on the market over the following two-hour period. The algorithm produces scores
to accurately predict a relative volatility - defined as scaled volatility by the average
of volatilities of large-cap firms used in the test set - of each stock price measured
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within two hours following the news. Tick data is used to train the algorithm and
produce scores, which take values between 0 and 100, 50 representing zero impact
news.

For each firm and each day with firm-specific news, we compute the average
value of the specific sentiment score. In this way, we aggregate across editions and
groups, where the later is defined as a collection of related news. We then map
the indices that take values between 0 and 100 onto [−1, 1]. Specifically, let xi ∈
{ESS,AES,CSS,NIP} be the average score value for a particular day and firm. We
map xi 7→ x̄i ∈ [−1, 1] by computing x̄i = (xi − 50)/50.
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id Frequency Source T-code

Panel A.
- Price/Earnings ratio quarterly CRSP & I/B/E/S 1
- Price/Earnings ratio consensus forecasts quarterly CRSP & I/B/E/S 1

Panel B.
1 Stock returns daily CRSP 1
2 Realized variance measure daily CRSP/computations 1

Panel C.
1 Event Sentiment Score (ESS) daily RavenPack 1
2 Aggregate Event Sentiment (AES) daily RavenPack 1
3 Aggregate Event Volume (AEV) daily RavenPack 1
4 Composite Sentiment Score (CSS) daily RavenPack 1
5 News Impact Projections (NIP) daily RavenPack 1

Table OA.4: Firm-level data description table – The id column gives mnemonics according to
data source, which is given in the second column Source. The column frequency states the sampling
frequency of the variable. The column T-code denotes the data transformation applied to a time-
series, which are: (1) not transformed, (2) ∆xt, (3) ∆2xt, (4) log(xt), (5) ∆ log (xt), (6) ∆2 log
(xt). Panel A. describes earnings data, panel B. describes quarterly firm-level accouting data, panel
C. daily firm-level stock market data and panel D. daily firm-level sentiment data series.

id Frequency Source T-code

Panel A.
1 Industrial Production Index monthly FRED-MD 5
2 CPI Inflation monthly FRED-MD 6

Panel B.
1 Crude Oil Prices daily FRED 6
2 S&P 500 daily CRSP 5
3 VIX Volatility Index daily FRED 1
4 Moodys Aaa - 10-Year Treasury daily FRED 1
5 Moodys Baa - 10-Year Treasury daily FRED 1
6 Moodys Baa - Aaa Corporate Bond daily FRED 1
7 10-Year Treasury - 3-Month Treasury daily FRED 1
8 3-Month Treasury - Effective Federal funds rate daily FRED 1
9 TED rate daily FRED 1

Panel C.
1 Earnings monthly Bybee, Kelly, Manela, and Xiu (2021) 1
2 Earnings forecasts monthly Bybee, Kelly, Manela, and Xiu (2021) 1
3 Earnings losses monthly Bybee, Kelly, Manela, and Xiu (2021) 1
4 Recession monthly Bybee, Kelly, Manela, and Xiu (2021) 1
5 Revenue growth monthly Bybee, Kelly, Manela, and Xiu (2021) 1
6 Revised estimate monthly Bybee, Kelly, Manela, and Xiu (2021) 1

Table OA.5: Other predictor variables description table – The id column gives mnemonics ac-
cording to data source, which is given in the second column Source. The column frequency states
the sampling frequency of the variable. The column T-code denotes the data transformation applied
to a time-series, which are: (1) not transformed, (2) ∆xt, (3) ∆

2xt, (4) log(xt), (5) ∆ log (xt), (6)
∆2 log (xt). Panel A. describes real-time monthly macro series, panel B. describes daily financial
markets data and panel C. monthly news attention series.
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Ticker Firm name PERMNO RavenPack ID
1 MMM 3M 22592 03B8CF
2 ABT Abbott labs 20482 520632
3 AUD Automatic data processing 44644 66ECFD
4 ADTN Adtran 80791 9E98F2
5 AEIS Advanced energy industries 82547 1D943E
6 AMG Affiliated managers group 85593 30E01D
7 AKST A K steel holding 80303 41588B
8 ATI Allegheny technologies 43123 D1173F
9 AB AllianceBernstein holding l.p. 75278 CB138D

10 ALL Allstate corp. 79323 E1C16B
11 AMZN Amazon.com 84788 0157B1
12 AMD Advanced micro devices 61241 69345C
13 DOX Amdocs ltd. 86144 45D153
14 AMKR Amkor technology 86047 5C8D61
15 APH Amphenol corp. 84769 BB07E4
16 AAPL Apple 14593 D8442A
17 ADM Archer daniels midland 10516 2B7A40
18 ARNC Arconic 24643 EC821B
19 ATTA AT&T 66093 251988
20 AVY Avery dennison corp. 44601 662682
21 BHI Baker hughes 75034 940C3D
22 BAC Bank of america corp. 59408 990AD0
23 BAX Baxter international inc. 27887 1FAF22
24 BBT BB&T corp. 71563 1A3E1B
25 BDX Becton dickinson & co. 39642 873DB9
26 BBBY Bed bath & beyond inc. 77659 9B71A7
27 BHE Benchmark electronics inc. 76224 6CF43C
28 BA Boeing co. 19561 55438C
29 BK Bank of new york mellon corp. 49656 EF5BED
30 BWA BorgWarner inc. 79545 1791E7
31 BP BP plc 29890 2D469F
32 EAT Brinker international inc. 23297 732449
33 BMY Bristol-Myers squibb co. 19393 94637C
34 BRKS Brooks automation inc. 81241 FC01C0
35 CA CA technologies inc. 25778 76DE40
36 COG Cabot oil & gas corp. 76082 388E00
37 CDN Cadence design systems inc. 11403 CC6FF5
38 COF Capital one financial corp. 81055 055018
39 CRR Carbo ceramics inc. 83366 8B66CE
40 CSL Carlisle cos. 27334 9548BB
41 CCL Carnival corporation & plc 75154 067779
42 CERN Cerner corp. 10909 9743E5
43 CHRW C.H. robinson worldwide inc. 85459 C659EB
44 SCHW Charles schwab corp. 75186 D33D8C
45 CHKP Check point software technologies ltd. 83639 531EF1
46 CHV Chevron corp. 14541 D54E62
47 CI CIGNA corp. 64186 86A1B9
48 CTAS Cintas corp. 23660 BFAEB4
49 CLX Clorox co. 46578 719477
50 KO Coca-Cola co. 11308 EEA6B3
51 CGNX Cognex corp. 75654 709AED
52 COLM Columbia sportswear co. 85863 5D0337
53 CMA Comerica inc. 25081 8CF6DD
54 CRK Comstock resources inc. 11644 4D72C8
55 CAG ConAgra foods inc. 56274 FA40E2
56 STZ Constellation brands inc. 69796 1D1B07
57 CVG Convergys corp. 86305 914819

Online Appendix - 8



58 COST Costco wholesale corp. 87055 B8EF97
59 CCI Crown castle international corp. 86339 275300
60 DHR Danaher corp. 49680 E124EB
61 DRI Darden restaurants inc. 81655 9BBFA5
62 DVA DaVita inc. 82307 EFD406
63 DO Diamond offshore drilling inc. 82298 331BD2
64 D Dominion resources inc. 64936 977A1E
65 DOV Dover corp. 25953 636639
66 DOW Dow chemical co. 20626 523A06
67 DHI D.R. horton inc. 77661 06EF42
68 EMN Eastman chemical co. 80080 D4070C
69 EBAY eBay inc. 86356 972356
70 EOG EOG resources inc. 75825 A43906
71 EL Estee lauder cos. inc. 82642 14ED2B
72 ETH Ethan allen interiors inc. 79037 65CF8E
73 ETFC E*TRADE financial corp. 83862 28DEFA
74 XOM Exxon mobil corp. 11850 E70531
75 FII Federated investors inc. 86102 73C9E2
76 FDX FedEx corp. 60628 6844D2
77 FITB Fifth third bancorp 34746 8377DB
78 FISV Fiserv inc. 10696 190B91
79 FLEX Flex ltd. 80329 B4E00D
80 F Ford motor co. 25785 A6213D
81 FWRD Forward air corp. 79841 10943B
82 BEN Franklin resources inc. 37584 5B6C11
83 GE General electric co. 12060 1921DD
84 GIS General mills inc. 17144 9CA619
85 GNTX Gentex corp. 38659 CC339B
86 HAL Halliburton Co. 23819 2B49F4
87 HLIT Harmonic inc. 81621 DD9E41
88 HIG Hartford financial services group inc. 82775 766047
89 HAS Hasbro inc. 52978 AA98ED
90 HLX Helix energy solutions group inc. 85168 6DD6BA
91 HP Helmerich & payne inc. 32707 1DE526
92 HSY Hershey co. 16600 9F03CF
93 HES Hess corp. 28484 D0909F
94 HON Honeywell international inc. 10145 FF6644
95 JBHT J.B. Hunt transport services Inc. 42877 72DF04
96 HBAN Huntington bancshares inc. 42906 C9E107
97 IBM IBM corp. 12490 8D4486
98 IEX IDEX corp. 75591 E8B21D
99 IR Ingersoll-Rand plc 12431 5A6336

100 IDTI Integrated device technology inc. 44506 8A957F
101 INTC Intel corp. 59328 17EDA5
102 IP International paper co. 21573 8E0E32
103 IIN ITT corp. 12570 726EEA
104 JAKK Jakks pacific inc. 83520 5363A2
105 JNJ Johnson & johnson 22111 A6828A
106 JPM JPMorgan chase & co. 47896 619882
107 K Kellogg co. 26825 9AF3DC
108 KMB Kimberly-Clark corp. 17750 3DE4D1
109 KNGT Knight transportation inc. 80987 ED9576
110 LSTR Landstar system inc. 78981 FD4E8D
111 LSCC Lattice semiconductor corp. 75854 8303CD
112 LLY Eli lilly & co. 50876 F30508
113 LFUS Littelfuse inc. 77918 D06755
114 LNC Lincoln national corp. 49015 5C7601
115 LMT Lockheed martin corp. 21178 96F126
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116 MTB M&T bank corp. 35554 D1AE3B
117 MANH Manhattan associates inc. 85992 031025
118 MAN ManpowerGroup inc. 75285 C0200F
119 MAR Marriott international inc. 85913 385DD4
120 MMC Marsh & mcLennan cos. 45751 9B5968
121 MCD McDonald’s corp. 43449 954E30
122 MCK McKesson corp. 81061 4A5C8D
123 MDU MDU resources group inc. 23835 135B09
124 MRK Merck & co. inc. 22752 1EBF8D
125 MTOR Meritor inc 85349 00326E
126 MTG MGIC investment corp. 76804 E28F22
127 MGM MGM resorts international 11891 8E8E6E
128 MCHP Microchip technology inc. 78987 CDFCC9
129 MU Micron technology inc. 53613 49BBBC
130 MSFT Microsoft corp. 10107 228D42
131 MOT Motorola solutions inc. 22779 E49AA3
132 MSM MSC industrial direct co. 82777 74E288
133 MUR Murphy oil corp. 28345 949625
134 NBR Nabors industries ltd. 29102 E4E3B7
135 NOI National oilwell varco inc. 84032 5D02B7
136 NYT New york times co. 47466 875F41
137 NFX Newfield exploration co. 79915 9C1A1F
138 NEM Newmont mining corp. 21207 911AB8
139 NKE NIKE inc. 57665 D64C6D
140 NBL Noble energy inc. 61815 704DAE
141 NOK Nokia corp. 87128 C12ED9
142 NOC Northrop grumman corp. 24766 FC1B7B
143 NTRS Northern trust corp. 58246 3CCC90
144 NUE NuCor corp. 34817 986AF6
145 ODEP Office depot inc. 75573 B66928
146 ONB Old national bancorp 12068 D8760C
147 OMC Omnicom group inc. 30681 C8257F
148 OTEX Open text corp. 82833 34E891
149 ORCL Oracle corp. 10104 D6489C
150 ORBK Orbotech ltd. 78527 290820
151 PCAR Paccar inc. 60506 ACF77B
152 PRXL Parexel international corp. 82607 EF8072
153 PH Parker hannifin corp. 41355 6B5379
154 PTEN Patterson-uti energy inc. 79857 57356F
155 PBCT People’s united financial inc. 12073 449A26
156 PEP PepsiCo inc. 13856 013528
157 PFE Pfizer inc. 21936 267718
158 PIR Pier 1 imports inc. 51692 170A6F
159 PXD Pioneer natural resources co. 75241 2920D5
160 PNCF PNC financial services group inc. 60442 61B81B
161 POT Potash corporation of saskatchewan inc. 75844 FFBF74
162 PPG PPG industries inc. 22509 39FB23
163 PX Praxair inc. 77768 285175
164 PG Procter & gamble co. 18163 2E61CC
165 PTC PTC inc. 75912 D437C3
166 PHM PulteGroup inc. 54148 7D5FD6
167 QCOM Qualcomm inc. 77178 CFF15D
168 DGX Quest diagnostics inc. 84373 5F9CE3
169 RL Ralph lauren corp. 85072 D69D42
170 RTN Raytheon co. 24942 1981BF
171 RF Regions financial corp. 35044 73C521
172 RCII Rent-a-center inc. 81222 C4FBDC
173 RMD ResMed inc. 81736 434F38
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174 RHI Robert half international inc. 52230 A4D173
175 RDC Rowan cos. inc. 45495 3FFA00
176 RCL Royal caribbean cruises ltd. 79145 751A74
177 RPM RPM international inc. 65307 F5D059
178 RRD RR R.R. donnelley & sons co. 38682 0BE0AE
179 SLB Schlumberger ltd. n.v. 14277 164D72
180 SCTT Scotts miracle-gro co. 77300 F3FCC3
181 SM SM st. mary land & exploration co. 78170 6A3C35
182 SONC Sonic corp. 76568 80D368
183 SO Southern co. 18411 147C38
184 LUV Southwest airlines co. 58683 E866D2
185 SWK Stanley black & decker inc. 43350 CE1002
186 STT State street corp. 72726 5BC2F4
187 TGNA TEGNA inc. 47941 D6EAA3
188 TXN Texas instruments inc. 15579 39BFF6
189 TMK Torchmark corp. 62308 E90C84
190 TRV The travelers companies inc. 59459 E206B0
191 TBI TrueBlue inc. 83671 9D5D35
192 TUP Tupperware brands corp. 83462 2B0AF4
193 TYC Tyco international plc 45356 99333F
194 TSN Tyson foods inc. 77730 AD1ACF
195 X United states Steel corp. 76644 4E2D94
196 UNH UnitedHealth group inc. 92655 205AD5
197 VIAV Viavi solutions inc. 79879 E592F0
198 GWW W.W. grainger inc. 52695 6EB9DA
199 WDR Waddell & reed financial inc. 85931 2F24A5
200 WBA Walgreens boots alliance inc. 19502 FACF19
201 DIS Walt disney co. 26403 A18D3C
202 WAT Waters corp. 82651 1F9D90
203 WBS Webster financial corp. 10932 B5766D
204 WFC Wells fargo & co. 38703 E8846E
205 WERN Werner enterprises inc. 10397 D78BF1
206 WABC Westamerica bancorp 82107 622037
207 WDC Western digital corp. 66384 CE96E7
208 WHR Whirlpool corp. 25419 BDD12C
209 WFM Whole foods market inc. 77281 319E7D
210 XLNX Xilinx inc. 76201 373E85

Table OA.6: Final list of firms – The table contains the information about the full list of firms:
tickers, firm names, CRSP PERMNO code and RavenPack ID. Tickers and firm names are taken
as of June, 2017. PERMNO and RavenPack ID columns are used to match firms and firm news
data.
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OA.3 Additional Empirical Results

p̂ei,t+1 Ŝ r̂i,t+1 êai,t+1|t

RW 1.355 0.054 0.194
Consensus 1.305

Individual
BIC 0.915 0.883 0.930 0.819
DM p-val RW 0.119 0.113
AIC 0.901 0.893 1.065 0.875
DM p-val RW 0.118 0.115
AICc 0.926 0.902 1.073 0.896
DM p-val RW 0.123 0.115

Pooled
BIC 0.894 0.790 0.926 0.794
DM p-val RW 0.060 0.026
AIC 0.893 0.794 0.930 0.798
DM p-val RW 0.058 0.027
AICc 0.893 0.795 0.930 0.799
DM p-val RW 0.058 0.028

Fixed effects
BIC 0.818 0.794 0.932 0.801
DM p-val RW 0.053 0.032
AIC 0.814 0.797 0.947 0.804
DM p-valat RW 0.051 0.034
AICc 0.814 0.798 0.947 0.804
DM p-val RW 0.051 0.035

Table OA.7: Column p̂ei,t+1 reports results for directly nowcasting the log P/E ratio, column Ŝ
reports the results of nowcasting and summing up the components, column ri,t+1 reports results for
the log return and column êai,t+1|t reports results for the log earnings forecast error of analysts. Row
RW reports results for the random walk, while row Consensus for the median consensus nowcast.
Panels Individual, Pooled and Fixed effects report results for different panel data models relative to
the consensus MSE (columns p̂ei,t+1 and Ŝ) and for the components (columns ri,t+1 and êai,t+1|t)

relative to the RW MSE. DM is the Diebold and Mariano (1995) test statistic p-values using one-
sided critical values.
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