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Abstract

We propose a novel bootstrap test of a dense model, namely factor regression,
against a sparse plus dense alternative augmented model with sparse idiosyncratic
components. The asymptotic properties of the test are established under time series
dependence and polynomial tails. We outline a data-driven rule to select the tuning
parameter and prove its theoretical validity. In simulation experiments, our procedure
exhibits high power against sparse alternatives and low power against dense deviations
from the null. Moreover, we apply our test to various datasets in macroeconomics and
finance and often reject the null. This suggests the presence of sparsity — on top of
a dense component — in commonly studied economic applications. The R package
'FAS' implements our approach.
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1 Introduction

In this paper, we investigate a factor-augmented sparse regression model. Our analysis

involves an observed sample of T real-valued outcomes y1, . . . , yT , and high-dimensional

regressors x1, . . . , xT ∈ Rp, which are interconnected as follows:

yt = f⊤
t γ

∗ + u⊤
t β

∗ + εt,

xt = Bft + ut, t = 1 . . . , T.
(1)

Here, εt ∈ R represents a random error, ut is a p-dimensional random vector of idiosyncratic

shocks, ft is a K-dimensional random vector of factors, and B is a p × K (nonrandom)

matrix of loadings. The parameters of interest are γ∗ ∈ RK and β∗ ∈ Rp and the right-

hand side of (1) is unobserved. We consider the case where the number p of regressors is

large with respect to the sample size T and a sparsity condition on the high-dimensional

parameter vector β∗ is imposed. In the asymptotic regimes we study, T goes to infinity,

p is allowed to grow with T while K remains fixed. The model formulation in equation

(1) effectively merges two popular approaches in handling high-dimensional datasets: factor

regression (Stock & Watson (2002), Bai & Ng (2006)) and sparse high-dimensional regression

(Tibshirani (1996), Bickel et al. (2009)). Such a model allows the outcome to be related to

the regressors through both common and idiosyncratic shocks and may better explain the

data than factor regression or sparse regression alone (see Fan et al. (2024, 2023), which

introduce and study model (1)). As noted in Fan et al. (2023), this type of structure has

many applications in forecasting, causal inference and to describe correlation networks. Note

that, as in Stock & Watson (2002), Bai & Ng (2006), Fan et al. (2023), we could augment

the model (1) with additional regressors wt entering the first equation of (1) but not the

second one. This case is discussed in the Appendix Section A.

We develop a test for the hypothesis:

H0 : β
∗ = 0 against H1 : β

∗ ̸= 0 is sparse, (2)

where our theory outlines the set of sparse alternatives against which our test has power. Our

specification test sheds light on the data-generating process by allowing us to determine if the

underlying model is dense (as is the factor regression model) or sparse plus dense, as is the
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factor-augmented sparse regression model. This determination will then tell us if the relation

between the regressors and the outcome is only driven by common shocks (factor regression)

or if idiosyncratic shocks also play a role (factor-augmented sparse regression). The question

of the adequacy of sparse or dense representations has recently garnered significant attention

(see, e.g., Giannone et al. (2021), Kolesár et al. (2023)). However, existing studies mostly

focus on the differences between sparse and dense models and have found that dense models

are often more adequate. In contrast, we compare a dense model with a sparse plus dense

alternative.

In this paper, we propose a new bootstrap test for (2). Our test’s principle is to compare

two estimators of
∑T

t=1 utεt. The first estimator is only consistent under the null, while

the second estimator relies on the LASSO, and is, therefore, consistent under sparse alter-

natives. Our proposed test does not require estimating covariance matrices and is easy to

implement. Following Lederer & Vogt (2021), we outline a data-driven rule to select the tun-

ing parameter of the LASSO estimator and prove its theoretical validity. We establish the

validity of the test within a theoretical framework that accommodates scenarios where the

number of variables, denoted by p, can significantly exceed T , and the explanatory variables

exhibit strong mixing and possess polynomial tails. We use simulations to evaluate the finite

sample properties of our procedure. Our test controls size and exhibits good power against

sparse alternatives even when p greatly exceeds T or the data are heavy-tailed and serially

correlated. A potential limitation of our approach might be that our approach also rejects

when β∗ is nonzero but has a dense structure. To assess this issue, we conduct simulations

with dense β∗. We find that our test exhibits very low power against such alternatives (in

absolute terms and also relatively to sparse alternatives with the same signal-to-noise ratio).

Hence, our test exhibits some robustness against dense alternatives. This result is intuitive:

the LASSO estimator on which our test relies sets to zero very small coefficients pertain-

ing to dense alternatives. Finally, we apply our test to several commonly studied datasets

in macroeconomics and finance and often reject the null. This suggests that sparsity can

help describe economic data once a dense component (here, modeled through the factors) is

included in the model. This result complements the recent studies Giannone et al. (2021),

Kolesár et al. (2023), which concluded that dense representations were often more appropri-
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ate for economic data. The R package 'FAS' implements our approach.

Related literature. Our paper relates to the growing literature on factor-augmented sparse

models, see Hansen & Liao (2019), Fan, Masini & Medeiros (2022), Fan et al. (2024, 2023),

Vogt et al. (2022), Beyhum & Striaukas (2023), Barigozzi et al. (2024) among others. In par-

ticular, Fan et al. (2023) proposes a general framework for factor-augmented sparse models.

As noted by a reviewer, our test can be used to check that the sparse idiosyncratic com-

ponents are jointly significant after the third step of the methodology by Fan et al. (2023).

Note that Fan et al. (2023)’s model includes lags of idiosyncratic terms and additional re-

gressors. In the Appendix, we explain how to extend our test to the case with additional

regressors. Section A of the Online Appendix outlines an adapted test with a lag. We do

not formally prove that our test works in these cases, but we conjecture that the asymptotic

properties extend to these more general models. Simulations reported in Section B of the

Online Appendix corroborate this presumption. We also note that the factor-augmented

sparse model studied in the present paper is a generalization of an earlier model studied

in Fosten (2017b,a) which augments the factor regression of Stock & Watson (2002) with a

low-dimensional set of idiosyncratic terms.

Fan et al. (2024) recently introduced the Factor-Adjusted deBiased Test (FabTest) for

evaluating (2). However, the FabTest exhibits several limitations. The test relies on a

desparsified LASSO estimator based on model (1). To achieve desparsification, Fan et al.

(2024) utilized the nodewise LASSO method proposed by Zhang & Zhang (2014) and van de

Geer et al. (2014) for estimating the precision matrix of the idiosyncratic shocks. How-

ever, this approach introduces p additional tuning parameters, in addition to the one used

in the original LASSO regression. Although the tuning parameters are selected through

cross-validation in practice, Fan et al. (2024) did not provide a theoretical justification for

this selection procedure. Besides, inferential theory for LASSO-type regressions is not well

understood when the tuning parameter is selected by cross-validation. Moreover, the test’s

performance may deteriorate due to errors associated with the nodewise LASSO estimates,

and it incurs a heavy computational cost. Another limitation of the FabTest is its reliance on

estimating the variance of εt, which can lead to imprecise results where variance estimation
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is challenging. Additionally, Fan et al. (2024) only established the validity of the FabTest

for i.i.d. sub-Gaussian data (see Section 2 in Fan et al. (2024)). An alternative is to use the

partial covariance test developed by Fan et al. (2023) and applied in Fan, Masini & Medeiros

(2022). This test’s principle is to estimate the covariance matrix of the idiosyncratic terms

(including the idiosyncratic term of yt, that is, u
⊤
t β

∗+εt) and then use a Gaussian bootstrap

under the null to obtain the critical value of the test statistic. In contrast to our test, this

partial covariance test does not make use of the LASSO estimator and requires estimating

a high-dimensional covariance matrix, which is challenging.

Finally, we would like to note that this paper contributes to various other strands of

literature. First, it connects to recent literature considering testing for high-dimensional

parameters. There exists several approaches, see Fan et al. (2015), Zhu & Bradic (2018),

Chernozhukov et al. (2019), Lederer & Vogt (2021), He et al. (2023) and references therein.

Our strategy draws inspiration from Lederer & Vogt (2021), a recent paper that introduces

a bootstrap procedure for selecting the penalty parameter of LASSO in a standard sparse

linear regression. They employ this procedure to test the null hypothesis that a specific high-

dimensional parameter equals zero. We adapt their approach to the case with unobserved

factors, time series dependence and polynomial tails, which poses a challenge beyond the

scope of the results in Lederer & Vogt (2021). Second, our work is related to the literature

on inference on parameters of additional low-dimensional regressors in the factor regression

model of Stock & Watson (2002), see Bai & Ng (2006), Gonçalves & Perron (2014, 2020).

Third, our work connects with the literature on specification tests for models involving un-

observed factors. Many papers test for the validity of the assumption that loadings are

time-independent in the approximate factor model itself — the second equation in (1) —

(Breitung & Eickmeier (2011), Chen et al. (2014), Han & Inoue (2015), Yamamoto & Tanaka

(2015), Su & Wang (2017, 2020), Baltagi et al. (2021), Xu (2022), Fu et al. (2023)), while

Corradi & Swanson (2014) tests for time-independence of all coefficients in the factor re-

gression model of Stock & Watson (2002). Our approach complements this literature by

proposing a specification test of the factor regression model under a different alternative,

namely the factor-augmented sparse regression model.
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Outline. The paper is organized as follows. In Section 2, we outline our testing procedure.

Its asymptotic properties are studied in Section 3. Then, Section 4 contains Monte Carlo

simulations. The empirical applications can be found in Section 5. Section 6 concludes. The

Appendix contains an adapted testing procedure for a model with additional regressors and

lags. The Online Appendix includes all proofs and additional discussions and simulation and

empirical results.

Notation. For an integer N ∈ N, let [N ] = {1, . . . , N}. The transpose of a n1 × n2 matrix

A is written A⊤. Its kth singular value is σk(A). Let us also define the Euclidean norm

∥A∥22 =
∑n1

i=1

∑n2

j=1A
2
ij and the sup-norm ∥A∥∞ = max

i∈[n1],j∈[n2]
|Aij|. The quantity n1 ∨ n2 is

the maximum of n1 and n2, n1∧n2 is the minimum of n1 and n2. ForN ∈ N, IN is the identity

matrix of size N×N . For a real-valued random variable Z and g > 0, we let |||Z||| = E[|Z|g]
1
g .

For a d-dimensional random vector Z, we define |||Z|||g = sup
u∈Rd: ∥u∥2≤1

∣∣∣∣∣∣u⊤Z
∣∣∣∣∣∣
g
.

2 The test

2.1 Testing procedure

In this subsection, we explain our testing procedure, which is then summarized in algorithmic

form in subsection 2.2. To facilitate understanding, we rewrite the model in matrix form as

follows:

Y = Fγ∗ + Uβ∗ + E ,

X = FB⊤ + U,

where Y = (y1, . . . , yT )
⊤, F = (f1, . . . , fT )

⊤ is a T × K matrix, U = (u1, . . . , uT )
⊤ and

X = (x1, . . . , xT )
⊤ are T × p matrices and E = (ε1, . . . , εT )

⊤.

It is important to note that, under the null hypothesis H0, we have U⊤(Y − Fγ∗) =

U⊤E . This observation suggests a testing procedure that involves computing an estimate

2T−1
∥∥U⊤(Y − Fγ∗)

∥∥
∞ and comparing it with the (estimated) quantiles of 2T−1

∥∥U⊤E
∥∥
∞.1

1We have a factor 2 in front of T−1
∥∥U⊤(Y − Fγ∗)

∥∥
∞ and T−1

∥∥U⊤E
∥∥
∞ because 2T−1

∥∥U⊤E
∥∥
∞ is the

effective noise of the problem, a natural concept in the literature on the LASSO, see Lederer & Vogt (2021).
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We can estimate U⊤(Y − Fγ∗) by principal components analysis. First, let K̂ be one of

the many estimators of the number of factors K available in the literature (see for instance

Bai & Ng (2002), Onatski (2010), Ahn & Horenstein (2013), Bai & Ng (2019), Fan, Guo &

Zheng (2022)). As in Fan et al. (2024), we let the columns of F̂ /
√
T be the eigenvectors cor-

responding to the leading K̂ eigenvalues of XX⊤ and B̂ = X⊤F̂ (F̂⊤F̂ )−1 = T−1X⊤F̂ . Then,

we project the data on the orthogonal of the vector space generated by the estimated factors.

Let P̂ = T−1F̂
(
F̂⊤F̂ /T

)−1

F̂⊤ = T−1F̂ F̂⊤ be the projector on the vector space generated

by the columns of F̂ . A natural estimate for U is Û = X−F̂ B̂⊤ =
(
IT − P̂

)
X. Similarly, we

let Ỹ =
(
IT − P̂

)
Y be an estimate of Y −Fγ∗. The final estimate of 2T−1

∥∥U⊤(Y − Fγ∗)
∥∥
∞

is our test statistic

2T−1
∥∥∥Û⊤Ỹ

∥∥∥
∞
. (3)

Next, to estimate the quantiles of the distribution of 2T−1
∥∥U⊤E

∥∥
∞ , we need an estimate

of E . We obtain it through the following LASSO estimator:

β̂λ = argmin
β∈Rp

1

T

∥∥∥Ỹ − Ûβ
∥∥∥2
2
+ λ∥β∥1, (4)

where λ > 0 is a penalty parameter, the choice of which will be fully data-driven in both

theory and practice. For t ∈ [T ], we denote by ỹt the tth element of Ỹ and ût as the T × 1

vector corresponding to the tth row of Û . For a given λ > 0, let ε̂λ,t = ỹt − û⊤
t β̂λ, t ∈ [T ] be

the estimate of εt. For a fixed α ∈ (0, 1), we can then estimate qα, the (1−α) quantile of the

distribution of 2T−1∥U⊤E∥∞, by the Gaussian multiplier bootstrap. Let e = (e1, . . . , eT ) be

a standard normal random vector independent of the data (X, Y ) and define the criterion

Q̂(λ, e) =

∥∥∥∥∥ 2T
T∑
t=1

ûtε̂λ,tet

∥∥∥∥∥
∞

.

The estimate q̂α(λ) of qα is then the (1− α)-quantile of the distribution of Q̂(λ, e) given X

and Y . Formally, q̂α(λ) = inf
{
q : Pe(Q̂(λ, e) ≤ q) ≥ 1− α

}
, where Pe(·) = P(·|X, Y ).

The only remaining element is the procedure to select λ. We adapt the approach of

Lederer & Vogt (2021) to our setting. Our choice of λ is

λ̂α = inf{λ > 0 : q̂α(λ
′) ≤ λ′ for all λ′ ≥ λ}. (5)
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We explain in Section 2.2 how to compute λ̂α in practice. The infimum in (5) exists because

for all λ ≥ λ̄ = 2T−1
∥∥∥Û⊤Ỹ

∥∥∥
∞
, it holds that β̂λ = β̂λ̄ = 0. Moreover, since Û β̂λ is a

continuous function of λ, q̂α(λ) is also continuous in λ and the infimum is attained at a point

λ̂α > 0 such that qα

(
λ̂α

)
= λ̂α. Let us recall briefly the heuristics behind the choice of λ and

refer the reader to Lederer & Vogt (2021) for more details. First, note that when λ is close

to qα, standard convergence bounds for the LASSO suggest that β̂λ is a precise estimate of

β∗, so that ε̂λ,t is a good estimate of εt and, in turn, q̂α(λ) is close to qα. Second, when λ

becomes (much) larger than qα, the error ε̂λ,t − εt becomes large and dependent of ût, which

in turn increases q̂α(λ) and leads it to be larger than qα. We then let our estimator of qα be

λ̂α = q̂α

(
λ̂α

)
.

The test rejects H0 at the level α when our test statistic is given in (3) is larger than the

estimate λ̂α of qα. Therefore, our testing procedure is free of tuning parameters stemming

from the LASSO regression in equation (4).

2.2 Computation

Algorithm 1 below explains how to conduct the test in practice. Let us discuss Step 4 of

Algorithm 1 in detail. It approximates λ̂α as defined in (5). It is advisable to set the grid

size M and the number of bootstrap samples L to be as large as possible. As mentioned

in Lederer & Vogt (2021), one can speed up Step 4b. by computing the LASSO with a

warm start along the penalty parameter path (see, e.g., Friedman et al. (2007)), i.e., for

each decreasing λ, the new coefficient estimate is computed by using the previous (i.e., the

one that was computed with a larger value of λ) as a starting value. Furthermore, Step 4c.

can be accelerated through parallelization techniques. In our implementation, we use both

suggestions, which greatly speed up the computations. We also note that to compute the

p-value of the test, it suffices to conduct it on a grid of values of α and let the p-value be

equal to the largest value of α in this grid such that the test of level α rejects H0.
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1. Estimate K̂ by one of the available estimators of the number of factors.

2. Let the columns of F̂ /
√
T be the eigenvectors corresponding to the leading K̂ eigen-

values of XX⊤.

3. Compute Û =
(
IT − P̂

)
X and Ỹ =

(
IT − P̂

)
Y , where P̂ = T−1F̂ F̂⊤.

4. Calculate an approximation λ̂α,emp of λ̂α as follows:

4a. Specify a grid 0 < λ1 < · · · < λM < λ̄, with λ̄ = 2T−1
∥∥∥Û⊤Ỹ

∥∥∥
∞
.

4b. For m ∈ [M ] compute
{
Q̂
(
λm, e

(ℓ)
)
: ℓ ∈ [L]

}
for L draws of e ∼ N (0, IT ) and the

corresponding empirical (1− α)-quantile q̂α,emp(λm) from them.

4c. Let λ̂α,emp = q̂α,emp(λm̂), with m̂ = min{m ∈ [M ] : q̂α,emp(λm′) ≤ λm′ for all m′ ≥

m}.

5. Reject H0 when 2T−1
∥∥∥Û⊤Ỹ

∥∥∥
∞

> λ̂α,emp.

Algorithm 1: Conducting a test of level α ∈ (0, 1).

3 Asymptotic theory

In this section, we provide the asymptotic properties of the test in a theoretical framework

allowing for time series dependence in the factors and the idiosyncratic shocks and polynomial

tails. We place ourselves in an asymptotic regime where T goes to infinity and p goes to

infinity as a function of T . The number of factors K is fixed with T . It would be possible to

let it grow, see, for instance, Beyhum & Gautier (2023). The distributions of the factors ft

and the error terms εt do not depend on T , while the distribution of the other variables are

allowed to vary with T . All the constants we introduce are universal in the sense that they

do not vary with the sample size. Our assumptions are similar to that of Fan et al. (2023)

but significantly weaker than that of Fan et al. (2024), which imposes that the variables are

i.i.d. sub-Gaussian.

We introduce further notation. The loading bjk corresponds to the jth element of the kth

column of B. Let also bj = (bj1, . . . , bjK)
⊤. For t ∈ [T ], let

zt =

(
u⊤
t , f

⊤
t , εt,

1
√
p

p∑
ℓ=1

utℓb
⊤
ℓ

)⊤

.
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Finally, define Σ = E[utu
⊤
t ].

We make the following assumptions.

Assumption 1 The estimator K̂ is such that P(K̂ = K) → 1.

Assumption 2 It holds that

(i) For all t ∈ [T ], E[ft] = 0, E[ftf⊤
t ] = IK and B⊤B is diagonal;

(ii) All the eigenvalues of the K ×K matrix p−1B⊤B are bounded away from 0 and ∞ as

p → ∞;

(iii) ∥Σ−BB⊤∥2 = O(1);

(iv) ∥B∥∞ = O(1).

Assumption 3 The following holds:

(i) The process {zt}t is weakly stationary. Moreover, it holds that

E[utj] = E[utjftk] = 0,

for all t ∈ [T ], j ∈ [p], k ∈ [K].

(ii) There exist κ1, κ2 > 0 such that, for all t ∈ [T ], σp(E
[
ε2tutu

⊤
t

]
) > κ1,

∥∥E [ε2tutu
⊤
t

]∥∥
∞ <

κ2, σp(Σ) > κ1, maxj∈[p]
∑p

ℓ=1 |Σjℓ| < κ2;

(iii) There exist q ≥ 8, C1 > 0 and ζ > 0, such that for s, t ∈ [T ], we have

|||zt|||q+ζ < C1;∣∣∣∣∣∣p−1/2
(
u⊤
s ut − E

[
u⊤
s ut

])∣∣∣∣∣∣
q
< C1;

(iv) {utεt}t is uncorrelated across t, and, for all t ∈ [T ], j ∈ [p], k ∈ [K],

E[utjεt] = E[ftkεt] = 0.

Assumption 4 Let α̃ denote the strong mixing coefficients of {zt}t. There exist C2, c > 0

such that c >
[(

h+ξ
ξ

) (
h
2
− 1
)]

∨
(

2
1− 2

h

)
and κ =

(
1
2
+ h

4(h+1)

c+ h
2(h+1)

)
< 1

2
, where h = q

2
and ξ = ζ

2
,

and, for all t ∈ Z+, we have α̃(t) ≤ C2t
−c.
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Assumption 1 means that the estimator K̂ of the number of factors K is consistent.

Examples of K̂ and sufficient conditions for its consistency can be found in Bai & Ng (2002),

Onatski (2010), Ahn & Horenstein (2013), Bai & Ng (2019), Fan, Guo & Zheng (2022).

Assumption 2 is the same as Assumption 3 in Fan et al. (2023). Its conditions (i) and (ii)

constitute a strong factor assumption (Bai (2003)). Assumption 3 restricts the moments

and the tail behavior of the variables. Assumption 3 (i),(ii),(iv) contain conditions on the

moments of the different variables similar to that of the literature (Bai & Ng (2006), Fan

et al. (2013)). We assume that the variables in Assumption 3 (iii) have polynomial tails

with common parameter q + ζ. It would be possible to have different tail parameters for

each variable but we avoid doing so to simplify our presentation. As in Fan et al. (2023)

the number of finite moments is at least 8. In the similar context of inference on factor

regression models, Assumption E.2. in Bai & Ng (2006) and Assumption 7 in Gonçalves

& Perron (2014) impose conditions analogous to the restriction that {utεt}t is uncorrelated

across t in Assumption 3 (iv). A sufficient condition for the latter restriction is that {εt}t is

uncorrelated across t and independent of {ut}t. Note that this assumption could be avoided

by using a block bootstrap method, but this would complicate the test. It may also not

be justified because (most of) the serial correlation in the data may be picked up by the

factors ft and not by the error term εt. Assumption 4 means that the process {zt}t has

strong mixing coefficients decaying polynomially, which is a restriction on the time-series

dependence of the variables. A similar assumption is made in Fan et al. (2023). Note that

Assumption 4 restricts the full distribution of the process {zt}t, while Assumption 3 (iv) just

imposes a condition on a particular serial correlation.

Let us introduce φ∗ = γ∗ − B⊤β∗ . To interpret φ∗, note that the first equation of (1)

can be rewritten yt = f⊤
t φ

∗ + x⊤
t β

∗ + εt, which becomes a usual high-dimensional sparse

regression model when φ∗ = 0. The next assumption concerns the relative growth rates of

T, p, ∥φ∗∥2 and ∥β∗∥1.

Assumption 5 The following holds:

(i) p = O(T r), where r <
(
h
4
− 1

2

)
∧
[
(h+ 1)(cκ− 1

2
)
]
;

(ii) log(T∨p)5√
T

∥β∗∥1 = o(1);
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(iii) log(T ∨ p)5/2
√
T

T∧p(∥φ
∗∥2 ∨ 1) = o(1).

Condition (i) restricts the rate at which p can grow with respect to T . We allow it to grow

at a polynomial rate, which is more restrictive than the standard restriction for the LASSO

(exponential rate). We need to be more restrictive because of the presence of polynomial

tails and time series dependence. Assumption 5 (ii) contains sparsity restrictions on the

alternative hypotheses. When ∥β∗∥∞ = O(1), condition (ii) corresponds, up to logarithmic

factors, to the standard consistency condition for the LASSO with bounded regressors and

errors with sub-Gaussian tails that is
√

log(p)/T (s0 ∨ 1) = o(1), where s0 is the number of

nonzero coefficients of β∗. We can impose a similar sparsity condition as in the standard

LASSO literature with sub-Gaussian errors, despite dealing with polynomial tails and serial

correlation, because we utilize the high-dimensional central limit theorem for polynomial-

tailed time series from Fan et al. (2023). Under the rate condition specified in Assumption

5 (i), this theorem allows us to essentially revert to the scenario with sub-Gaussian errors.

Condition (iii) is a slightly more restrictive version of the standard condition that
√
T/(T ∧

p) = o(1) for inference in the factor regression model.2 Indeed, since φ∗ is of size K, it

is reasonable to assume that ∥φ∗∥2 = O(1). Under this condition, (iii) corresponds to
√
T/(T ∧ p) = o(1) up to logarithmic factors. As noted by a referee, the role of (iii) is to

ensure that the error coming from the estimation of the factors is asymptotically negligible

(see for instance Bai & Ng (2006)). It may be possible to relax it using a more elaborate

bootstrap scheme, see Gonçalves & Perron (2014). Additionally, it is worth noting that our

proofs reveal that Assumption 5 is stronger than necessary, and the validity of the test could

be established under more complex but weaker rate conditions. However, for the sake of

clarity, we present Assumption 5 instead of a more intricate condition.

We have the following theorem.

Theorem 1 Let Assumptions 1, 2, 3, 4 and 5 hold. For all α ∈ (0, 1), we have

(i) If β∗ = 0, then P
(
T−1

∥∥∥Û⊤Ỹ
∥∥∥
∞

> λ̂α

)
≤ α + o(1).

(ii) If
√

log(T∨p)
T∧p = oP

(
T−1

∥∥U⊤Uβ∗
∥∥
∞

)
, then P

(
T−1

∥∥∥Û⊤Ỹ
∥∥∥
∞

> λ̂α

)
→ 1.

2This condition is equivalently stated as
√
T/p = o(1) in Bai & Ng (2006), Corradi & Swanson (2014)

and many others.
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The proof of Theorem 1 can be found in Online Appendix D. Statement (i) means that

the empirical size of the test tends to the nominal size. Statement (ii) shows that the test

has asymptotic power equal to 1 against sequences of alternatives such that
√

log(T∨p)
T∧p =

oP
(
T−1

∥∥U⊤Uβ∗
∥∥
∞

)
. As noted in Lederer & Vogt (2021), such a condition is inevitable

because the presence of the error εt prevents us from distinguishing true Uβ∗ and εt when

Uβ∗ is too small. We discuss further this condition in Section D.8 of the Online Appendix.

4 Monte Carlo simulations

In this section, we provide a Monte Carlo study shedding light on the finite sample perfor-

mance of our proposed testing procedure. We use the following model as our data-generating

process (DGP):

yt = f⊤
t γ

∗ + u⊤
t β

∗ + εt,

xt = Bft + ut, t = 1 . . . , T.

We generate samples with T = {200, 400} observations, p = {T, 5T} variables and K = 2

factors. The loadings B = {bjk}j∈[p],k∈[K] are such that bjk ∼ U [−1, 1]. The factors are

generated as ft = ρfft−1 + f̃t for t = 2, . . . , T , where f̃t are i.i.d. N
(
0, IK

(
1− ρ2f

))
. The

idiosyncratic components {ut} are such that ut = ρuut−1 + ũt for t = 2, . . . , T , where ũt

are i.i.d. N (0,Σ (1− ρ2u)), with Σij = c
|i−j|
u , i, j ∈ [p]., where cu reflects the amount of

cross-sectional dependence. We also let εt = ρeεt−1 + ε̃t for t = 2, . . . , T , where ε̃t are i.i.d.

N (0, (1− ρ2e)).

The parameters ρf , ρu, and ρe control the level of time series dependence. The stationary

distributions of ft, ut, εt are, respectively, N (0, IK), N (0,Σ) and N (0, 1). We initialize f0,

u0 and ε0 as such. We consider three dependency designs, where we vary the cross-sectional

dependence via parameter s and the time series dependence via parameters (ρf , ρu, ρe) as

follows:

Design 1. cu = ρf = ρu = ρe = 0, so that the data are i.i.d. across j and t.

Design 2. cu = 0.1, ρf = 0.6, ρu = 0.1 and ρe = 0, which introduces cross-sectional
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dependence in the idiosyncratic shocks and time-series dependence in the factors and

the idiosyncratic shocks.

Design 3. cu = 0.1, ρf = 0.6 and ρu = ρe = 0.1, where, on top of the cross-sectional

dependence, there is time series dependence in the factors, the idiosyncratic shocks

and the error terms.

Our theory does not formally allow the third design, but we want to show that our test

performs well even under weak serial correlation of {εt}t.

Finally, we consider two cases for the target parameter β∗. For the first case we set β∗ =

(1, 0, . . . , 0)⊤×m, where m ∈ {0, 0.1, 0.2, 0.3, 0.4} controls the signal strength. This choice of

β∗ corresponds to a sparse design. For the second case, we consider β∗ = (1/
√
p, . . . , 1/

√
p)⊤×

m, which corresponds to dense design. In both cases, we set γ∗ = (0.5, 0.5)⊤. Note that the

choice of β∗ ensures that for the dependence Design 1, the signal-to-noise ratio is the same

for both sparse and dense cases.

We compute the rejection probabilities of our test at the significance levels α ∈ {0.1, 0.05, 0.01}

over 2000 replications. To implement our test, we set M = 100 and choose an equidistant

grid of values for λ, using L = 1000 bootstrap replications. The results are insensitive to the

choice of L and M as long as they are sufficiently large, which is expected since their pri-

mary role is in the approximation of theoretical quantities. In our experience, L = M = 100

already yields very precise results. The number of factors K is estimated through the eigen-

value ratio estimator of Ahn & Horenstein (2013).

4.1 Main results

The results for T = 200 and sparse and dense alternatives are reported in Tables 1-2. In

the Online Appendix, we present simulations under the same data-generating processes,

but with the larger sample size T = 400 (Tables OA.1 and OA.2). First, we observe that

the empirical size is close to the nominal levels for all designs, indicating that both cross-

sectional and serial dependence have little effect on the empirical size of our testing procedure.

Notably, the results show consistent power when the alternative hypothesis is sparse (Table

1) across all data-generating processes (DGPs), suggesting that the dependency design does
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not significantly impact the power of our test. However, the power tends to slightly decrease

in scenarios with large p cases for both T = 200 and T = 400. Interestingly, in the case

of dense alternatives (Table 2), we see a significant drop (relative to sparse alternatives)

in power across all designs. This highlights that our testing procedure has low power when

β∗ ̸= 0 is dense. An intuition for this result is as follows. Our test uses the LASSO estimator,

which enforces sparsity. When β∗ is dense, the LASSO estimator often sets β̂λ̂α
to 0, leading

to non-rejection of the null.

p/T = 200/200 p/T = 1000/200

m α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

Design 1: s = ρf = ρu = ρe = 0

0.0 0.084 0.033 0.005 0.090 0.040 0.005

0.1 0.122 0.062 0.015 0.108 0.049 0.010

0.2 0.604 0.507 0.336 0.274 0.184 0.082

0.3 0.984 0.973 0.916 0.704 0.614 0.418

0.4 1.000 1.000 1.000 0.958 0.927 0.833

Design 2: s = 0.1, ρf = 0.6, ρu = 0.1 and ρe = 0

0.0 0.092 0.045 0.010 0.090 0.040 0.004

0.1 0.122 0.066 0.016 0.104 0.048 0.009

0.2 0.631 0.534 0.362 0.274 0.184 0.080

0.3 0.984 0.971 0.931 0.731 0.633 0.435

0.4 1.000 1.000 1.000 0.961 0.931 0.853

Design 3: s = 0.1, ρf = 0.6 and ρu = ρe = 0.1

0.0 0.102 0.048 0.011 0.099 0.044 0.004

0.1 0.130 0.070 0.017 0.108 0.054 0.009

0.2 0.620 0.528 0.356 0.273 0.186 0.084

0.3 0.980 0.970 0.925 0.723 0.631 0.429

0.4 1.000 1.000 1.000 0.962 0.933 0.849

Table 1: Rejection probabilities for the three dependence designs we consider and sparse

β∗. The data are generated with Gaussian variables. The sample size is T = 200 while the

number of regressors is p ∈ {200, 1000}.
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p/T = 200/200 p/T = 1000/200

m α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

Design 1: s = ρf = ρu = ρe = 0

0.0 0.084 0.033 0.005 0.090 0.040 0.005

0.1 0.097 0.039 0.008 0.092 0.035 0.009

0.2 0.114 0.060 0.007 0.100 0.045 0.009

0.3 0.140 0.074 0.011 0.124 0.055 0.010

0.4 0.176 0.096 0.017 0.152 0.068 0.015

Design 2: s = 0.1, ρf = 0.6, ρu = 0.1 and ρe = 0

0.0 0.084 0.040 0.006 0.081 0.032 0.007

0.1 0.085 0.041 0.009 0.091 0.034 0.005

0.2 0.108 0.051 0.012 0.114 0.051 0.008

0.3 0.155 0.072 0.015 0.153 0.072 0.011

0.4 0.210 0.109 0.023 0.199 0.100 0.018

Design 3: s = 0.1, ρf = 0.6 and ρu = ρe = 0.1

0.0 0.094 0.046 0.005 0.091 0.035 0.006

0.1 0.100 0.046 0.010 0.104 0.044 0.006

0.2 0.121 0.060 0.012 0.124 0.055 0.009

0.3 0.171 0.087 0.018 0.168 0.080 0.012

0.4 0.228 0.116 0.025 0.222 0.108 0.020

Table 2: Rejection probabilities for the three dependence designs we consider and dense β∗.

The data are generated with Gaussian variables. The sample size is T = 200 while the

number of regressors is p ∈ {200, 1000}.

4.2 Heavy-tailed data, number of factors and lagged idiosyncratic

shocks

In this subsection, we consider the same data-generating process as in the main design Table

1, but we change elements of it to obtain results for heavy-tailed data and in cases when

the number of factors is over- and under-estimated. For the heavy-tailed data scenarios, we

generate factors, idiosyncratic shocks and regression errors from student-t(5) distribution.

This allows us to investigate the impact of the heavy tails on the proposed testing procedure.

Note that our theoretical analysis imposes a condition for the existence of first 8 finite
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moments, so that generating student-t(5) errors goes beyond what our assumptions allow.

We generate heavy-tailed factors ft, idiosyncratic components ut and the error terms ϵt by

generating f̃t, ũt and ϵ̃t from a student-t(5) rather than a Gaussian distribution. Besides

changing the distribution of the data, we also compute the performance of our test when

the number of factors is either over-estimated or under-estimated. In this case, our data

generating process is the same as for Table 1, but rather than estimating the number of

factors K using the eigenvalue ratio estimator, we set it to K = 5 (over-estimated case) and

K = 1 (under-estimated case).

Results are reported in Tables OA.3-OA.4 and OA.5-OA.8 for heavy-tailed data and

different number of factors, respectively. In the former case, we see a slight deterioration

of our method compared to the Gaussian DGPs. This is not surprising since the residuals

of the LASSO regression, as well as the factors, may be less accurately estimated in finite

samples due to heavy tails, see, e.g., Babii et al. (2024). Next, we analyze the results of the

case of the over-estimated number of factors. The performance is slightly affected compared

to the case where we use the eigenvalue ratio estimator to determine the number of factors

(see Table 1), but the differences are small. When comparing with the under-estimated case,

we see that our testing procedure is over-sized. These results are in line with the literature

on inference with factors models, see, e.g., Moon & Weidner (2015).

It is also interesting to investigate the performance of our testing procedure with lagged

idiosyncratic shocks. In this case, we generate the data from the following model

yt = f⊤
t γ

∗ + u⊤
t β

∗
1 + u⊤

t−1β
∗
2 + εt,

xt = Bft + ut, t ∈ [T ],
(6)

where all the elements are as in the main DGPs except that we add lagged idiosyncratic

shock, set β∗
1 = β∗ = (1, 0, . . . , 0)⊤ × m and all elements of β∗

2 = 0. The algorithm to

compute the test for this model appears in the Online Appendix OA.1. We report results for

sparse and Gaussian DGPs which appear in Online Appendix Tables OA.9-OA.10. Results

show a slight deterioration of performance in terms of power, while the empirical size appears

to be similar as in the main scenario Table 1 (see also Table OA.1 in Online Appendix for a

large T comparison). The small decrease in power is due to an increase in the dimensionality
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of the regressors.

5 Empirical applications

In this section, we present three empirical examples using well-established macroeconomic

and financial datasets.

First, we examine the FRED-MD dataset, which includes 121 monthly macroeconomic

series covering various sectors of the US economy. For further details, see McCracken & Ng

(2016). We also study a quarterly variant of FRED-MD with 202 variables, named FRED-

QD, for which results are reported in the Online Appendix. Second, we analyze a financial

dataset comprising 100 representative anomalies from the literature, which we use to explain

aggregate market returns and industry portfolio returns. For more information, we refer

to Dong et al. (2022). Lastly, we investigate the network structure in asset returns using

a finance dataset. Following the approach of Fan et al. (2023), we consider a cross-section

of monthly stock returns and a set of observable factors to study the relationships among

financial firms.

We study these datasets for several reasons. First, FRED-MD and its quarterly variant

FRED-QD are among the most widely studied high-dimensional macroeconomic datasets.

Providing further insights into these datasets could be valuable for the extensive empirical

macroeconomic literature. Second, the empirical asset pricing literature has proposed and

examined many factors, known as anomalies, that explain asset prices. Our research offers

new insights into applying long-short anomalies to explain the market and industry portfolio

returns rather than individual asset returns. Third, applying our method to firm-level stock

returns illustrates using a model with observed regressors, as detailed in Appendix Section A.

Overall, these diverse applications, using macroeconomic and financial datasets, demonstrate

the versatility of our approach across different econometric settings, varying in sample sizes

relative to the number of regressors. Lastly, we note that in all empirical applications, we

select the number of factors using the eigenvalue ratio estimator of Ahn & Horenstein (2013).
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5.1 Macroeconomic application

In the macroeconomic application, we investigate the FRED-MD dataset over the sample

period 1980 January to 2019 December containing T = 480 observations. This is a commonly

used dataset in various macroeconomic studies. In our analysis, we regress each of the 121

variables available in the dataset on common and idiosyncratic shocks. Specifically, we

estimate the following model:

yt+1 = f⊤
t γ

∗ + u⊤
t β

∗ + εt+1,

xt = Bft + ut, t = 1 . . . , T,
(7)

where yt+1 represents one of the variables in the dataset at time t+1, and xt includes all the

remaining regressors at time t. Note that we transform the original series using commonly

applied transformations as suggested by McCracken & Ng (2016). To estimate ft, we apply

PCA using the eigenvalue ratio estimator to determine the number of common factors. We

apply our procedure to test H0. Results for each category of variable appear in Table 3.

First, results show that in most categories, we frequently reject the null hypothesis at

the 10%, 5%, and even 1% significance levels. This provides evidence of sparsity in the

idiosyncratic shocks of the macroeconomic data. The categories where we reject the null

most often are Output and Income, Consumption, Orders, and Inventories, Labor Market,

Interest and Exchange Rates, and Prices. For the remaining categories, the null hypothesis

is not frequently rejected, suggesting that the sparse component is not important for those

series. Interestingly, for the housing category, we never reject the null, while the other two

categories for which we reject less frequently, i.e., Money and Credit and Stock Market, could

be classified as financial rather than macroeconomic data. In addition to the results for the

FRED-MD dataset, we also obtain similar rejection ratios for the FRED-QD dataset, which

is a quarterly macroeconomic dataset similar to FRED-MD, but containing more variables

and less observations. Results appear in Table OA.11. The results for the FRED-QD dataset

also show a similar pattern, providing evidence of sparsity in the idiosyncratic shocks.
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Category 10% 5% 1%

Output and Income (16) 0.500 0.438 0.125

Consumption, Orders, and Inventories (9) 1.000 0.778 0.222

Labor Market (31) 0.774 0.677 0.419

Housing (10) 0.000 0.000 0.000

Money and Credit (12) 0.250 0.167 0.083

Stock Market (3) 0.333 0.000 0.000

Interest and Exchange Rates (19) 0.789 0.737 0.474

Prices (20) 0.800 0.650 0.450

Table 3: Rejection ratios for each category of the FRED-MD dataset over the sample period

1980 January to 2019 December. In parentheses, we report the number of series per category.

Data source: McCracken & Ng (2016).

5.2 Finance application I

In our second application, we test the sparse component of a financial dataset comprising a set

of regressor variables shown to predict market excess returns (Dong et al. 2022). Specifically,

we examine whether the idiosyncratic sparse component is important in explaining market

excess returns as well as returns of 49 industry portfolios when regressing on a representative

sample of 100 long-short anomaly portfolio returns. The data spans from January 1970 to

December 2017, therefore, the effective sample size is T = 575. We estimate the same model

as in (7).

Dong et al. (2022) have shown that these regressors lead to accurate forecasts of stock

market excess return by employing various machine learning and forecast combination meth-

ods. For more details on the data and a full list of target variables, see Section C.2 of the

Online Appendix. Results are reported in Table 4.

Our results indicate that for more than 50% of 49 industry returns, the idiosyncratic

shocks are significant at the 10% level, meaning we reject the null hypothesis at the 10%

level. For the aggregate market returns, the p-value is 0.042, providing evidence in favor

of the sparse component. Additionally, we reject the null at the 1% significance level for
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Market∗∗ 0.042 Clths∗∗∗ 0.001 FabPr 0.272 Oil∗∗ 0.014 Boxes∗∗ 0.015

Agric 0.184 Hlth 0.500 Mach∗∗ 0.012 Util 0.252 Trans∗∗ 0.024

Food∗∗ 0.012 MedEq 0.198 ElcEq∗∗ 0.034 Telcm 0.625 Whlsl 0.117

Soda 0.129 Drugs 0.286 Autos∗∗∗ 0.007 PerSv∗∗ 0.043 Rtail∗ 0.099

Beer 0.150 Chems∗∗ 0.014 Aero∗∗∗ 0.006 BusSv∗ 0.051 Meals∗∗ 0.043

Smoke 0.130 Rubbr∗∗∗ 0.002 Ships∗∗ 0.034 Hardw 0.636 Banks∗∗ 0.011

Toys 0.205 Txtls∗∗ 0.023 Guns 0.173 Softw 0.206 Insur∗∗ 0.024

Fun∗ 0.057 BldMt∗∗∗ 0.004 Gold 0.504 Chips 0.646 RlEst∗∗∗ 0.003

Books∗∗∗ 0.001 Cnstr 0.123 Mines∗∗∗ 0.005 LabEq 0.618 Fin 0.195

Hshld 0.189 Steel 0.278 Coal 0.268 Paper∗∗∗ 0.001 Other∗∗ 0.010

Table 4: p-Values of market and industry excess returns regressed on 100 long-short anomaly

characteristics. Bold entries with ∗, ∗∗, and ∗∗∗ indicate significance at 10%, 5% and 1%

significance level, respectively.

nine industry portfolios: Apparel (Clths), Automobiles and Trucks (Autos), Aircraft (Aero),

Rubber and Plastic Products (Rubbr), Construction Materials (BldMt), Real Estate (RlEst),

Printing and Publishing (Books), Non-Metallic and Industrial Metal Mining (Mines), and

Business Supplies (Paper). Furthermore, we analyze returns of 10 industry portfolios which

are based on a broader classification compared to 49 industries. Results are presented in

Table OA.13 in the Online Appendix, which confirm a similar pattern. Therefore, we find

strong evidence supporting the presence of sparse idiosyncratic components in equity returns

for a variety of industries and the aggregate market.

5.3 Finance application II

In the third empirical application, we examine the sparse idiosyncratic components of indi-

vidual stock returns using the dataset from Jensen et al. (2023). Specifically, we use monthly

stock return data for a sample of 721 firms with no missing data from January 1991 to De-

cember 2022, resulting in T = 384 and p = 721 (the regressors xit are the returns of other

firms). We test a model similar to Fan et al. (2023) where our test can be seen as a diagnostic

check after the third step in the approach put forward by Fan et al. (2023). However, our

analysis diverges from Fan et al. (2023) by focusing on a balanced panel of firms. We select
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firms for which we have a complete time series of returns and observed regressors. Further-

more, in our industry or sector analyses, we group firms into 49 industries — the same as in

finance I application —, whereas Fan et al. (2023) use a different firm classification.

Specifically, denote y
(i)
t the stock excess return of firm i at time t. We regress the firm’s

excess return on a set of observable factors — see Table OA.15 for the list of factors — as

well as common and idiosyncratic components stemming from all other returns. The model

is thus an example of the extension of the main model with additional covariates, see Online

Appendix A. Denoting the returns of all firms except the ith firm as xit = (yjt)j∈[n]/i, where

n is the total number of firms, we report the rejection ratios β∗ by testing β∗ = 0 in the

following model for each firm i:

y
(i)
t = f⊤

t γ
∗ + w⊤

t δ
∗ + u⊤

itβ
∗ + εt,

xit = Bfit + uit, t = 1 . . . , T,
(8)

where wt denotes the observable factors.

Results are reported in Table 5. First, we see that the rejection ratios (the proportion of

firms i for which we reject the null) are relatively low and only slightly above the nominal

significance levels. This suggests that the sparse component is much less significant in

individual stock returns compared to other applications we considered, i.e., we find weak

evidence of the presence of sparse idiosyncratic shocks in firm-level returns. To gain further

insight, we report results by grouping firms into 49 industries, as reported in Table OA.16

in the Online Appendix. We find that for most industries, the rejection ratios are small.

However, a few industries exhibit a larger proportion of rejections, notably Precious Metals

(Gold) and Communications (Telcm).

10 % 5 % 1 %

Rejection rates 0.130 0.082 0.038

Table 5: Rejection rates for the firm-level financial returns dataset.
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6 Conclusion

This paper proposes a new bootstrap test for the adequacy of the factor regression model

against factor-augmented sparse alternatives. We establish the asymptotic validity of our

test under time series dependence and polynomial tails. In a Monte Carlo study, we show

that our procedure has excellent finite sample properties against sparse alternatives but

low power against dense alternatives. We often reject the null when we apply our testing

procedure to standard datasets in macroeconomics and finance. This suggests that sparsity

is present - on top of a dense model - in several economic environments.

This message complements previous studies. Indeed, based on different approaches, Gi-

annone et al. (2021), Kolesár et al. (2023) found evidence against the presence of sparsity

in several economic datasets, comparing only sparse and only dense models. Our analysis

instead suggests that sparsity may still have a role to play on top of a dense component.

These findings also constitute arguments in favor of using sparse plus dense models, which

have recently gathered a lot of interest in the econometrics literature.

A potential limitation of our analysis is that we may reject H0 because β
∗ is nonzero but

dense. In our Monte-Carlo simulations, we compare DGPs with sparse and dense β∗ with the

same signal-to-noise ratio and find that our test has high power against the sparse alternative

but low power against dense deviations from the null. This finding should mitigate the

previous concern that rejection might be due to dense β∗ ̸= 0. A complementary approach

free of this concern is testing sparsity directly. Kolesár et al. (2023) takes this road by

proposing a test for the null hypothesis of sparsity in a high-dimensional regression model

(without factors). The limitations of their approach are that it is only valid when the number

of variables is smaller than the sample size and that it does not reject the null when the

regression coefficient is equal to 0. This is a problem because, in our context, we would not

conclude in favor of the existence of sparsity when β∗ = 0. For future research, it would

be interesting to adapt the test of Kolesár et al. (2023) to the factor-augmented regression

model and apply it to the datasets we consider in the present paper.
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Appendix: extension to additional regressors

A A model with additional regressors

As in Stock & Watson (2002), Bai & Ng (2006), Lederer & Vogt (2021), in empirical ap-

plications we can augment the model with additional observed low-dimensional regressors

w1, . . . , wt ∈ Rℓ (where ℓ is fixed with T ). We therefore can consider the alternative model.

yt = f⊤
t γ

∗ + w⊤
t δ

∗ + u⊤
t β

∗ + εt,

xt = Bft + ut, t = 1 . . . , T,
(9)

Here, again, εt ∈ R represents a random error, ut is a p-dimensional random vector of

idiosyncratic shocks, ft is a K-dimensional random vector of factors, and B is a p × K

random matrix of loadings. The parameters are γ∗ ∈ RK , δ∗ ∈ Rℓ, β∗ ∈ Rp. Note that

here wt plays the role of an observed factor (with loading equal to 0). This will be key to

understanding the alternative testing procedure of Section B.

We focus on testing

H0 : β
∗ = 0 against H1 : β

∗ ̸= 0. (10)

To facilitate understanding, we again rewrite the model in matrix form as follows:

Y = F⊤γ∗ +Wδ∗ + U⊤β∗ + E ,

X = BF + U,

where Y = (y1, . . . , yT )
⊤, F = (f1, . . . , fT )

⊤ is a T × K matrix, U = (u1, . . . , uT )
⊤,

W = (w1, . . . , wT )
⊤ and X = (x1, . . . , xT )

⊤ are T × p matrices and E = (ε1, . . . , εT )
⊤.

B Testing procedure of the extended model

Algorithm 2 present the test in this extended model. It is similar to Algorithm 1. The only

difference is that P̂ is now the projector on the columns of the T × (K̂ + ℓ) matrix (F̂ W )

in Step 3. Essentially, wt is treated as an observed factor.
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1. Estimate K̂ by one of the available estimators of the number of factors.

2. Let the columns of F̂ /
√
T be the eigenvectors corresponding to the leading K̂ eigen-

values of XX⊤.

3. Compute Û =
(
IT − P̂

)
X and Ỹ =

(
IT − P̂

)
Y , where P̂ is the projector on the

columns of the T ×
(
K̂ + ℓ

)
matrix

(
F̂ W

)
. Denote by ût the T ×1 vector corresponding

to the transpose of the tth row of Û .

4. Calculate an approximation λ̂α,emp of λ̂α as follows:

4a. Specify a grid 0 < λ1 < · · · < λM < λ̄, with λ̄ = 2T−1
∥∥∥Û⊤Ỹ

∥∥∥
∞
.

4b. For λ > 0, and e ∈ RT , let Q̂ (λ, e) =
∥∥∥ 2
T

∑T
t=1 ûtε̂λ,tet,

∥∥∥
∞
, where ε̂λ,t = ỹt −

û⊤
t β̂λ, t ∈ [T ], for β̂λ = argminβ∈Rp

1
T

∥∥∥Ỹ − Ûβ
∥∥∥2
2
+ λ∥β∥1. For m ∈ [M ], compute{

Q̂
(
λm, e

(ℓ)
)
: ℓ ∈ [L]

}
for L draws of e ∼ N (0, IT ) and the corresponding empirical

(1− α)-quantile q̂α,emp(λm) from them.

4c. Let λ̂α,emp = q̂α,emp(λm̂), with m̂ = min{m ∈ [M ] : q̂α,emp(λm′) ≤ λm′ for all m′ ≥

m}.

5. Reject H0 when 2T−1
∥∥∥Û⊤Ỹ

∥∥∥
∞

> λ̂α,emp.

Algorithm 2: Conducting a test of level α ∈ (0, 1) with additional regressors.
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Supplementary material

Online Appendix: Additional empirical and simulation results, details on the data and

the proof of Theorem 1 (.pdf file).

R package: the R package 'FAS' that implements our test is available on CRAN: https:

//cran.r-project.org/web/packages/FAS/index.html.
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A Testing procedure of the model with lagged id-

iosyncratic terms

Algorithm OA.1 presents the test for the model with lagged idiosyncratic elements, see

(6). This algorithm differs from the main procedure in Algorithm 1 by augmenting the

lagged idiosyncratic terms into the sparse component. The procedure could be extended

to accommodate observed factors, similar to Algorithm 2. The algorithm with lagged

idiosyncratic terms is outlined as follows and can be easily adapted in cases where there is

more than one lag.

1. Estimate pK by one of the available estimators of the number of factors.

2. Let the columns of pF/
√
T be the eigenvectors corresponding to the leading pK eigen-

values of XX⊤.

3. Compute pU =
(
IT − pP

)
X and Ỹ =

(
IT − pP

)
Y , where pP = T−1

pF pF⊤.

3a. Denote by put the T × 1 vector corresponding to transpose of the tth row of pU . For

all t ∈ {2, . . . T}, let ũt =
(
pu⊤
t , pu

⊤
t−1

)
.

4. Calculate an approximation pλα,emp of pλα as follows:

4a. Specify a grid 0 < λ1 < · · · < λM < λ̄, with λ̄ = 2(T − 1)−1
∥∥∥∑T

t=2 ũtỹt

∥∥∥
∞
.

4b. For λ > 0, and e ∈ RT̃ , let pQ (λ, e) =
∥∥∥ 2
T−1

∑T
t=2 ũtpελ,tet,

∥∥∥
∞
, where pελ,t = ỹt −

ũ⊤
t
pβλ, t ∈ {2, . . . , T}, for pβλ = argminβ∈Rp

1
T−1

∑T
t=2

(
ỹt − ũ⊤

t
pβλ

)2
+ λ∥β∥1. For

m ∈ [M ], compute
{
pQ
(
λm, e

(ℓ)
)
: ℓ ∈ [L]

}
for L draws of e ∼ N (0, IT−1) and the

corresponding empirical (1− α)-quantile pqα,emp(λm) from them.

4c. Let pλα,emp = pqα,emp(λ pm), with pm = min{m ∈ [M ] : pqα,emp(λm′) ≤ λm′ for all m′ ≥

m}.

5. Reject H0 when 2(T − 1)−1
∥∥∥∑T

t=2 ũtỹt

∥∥∥
∞

> pλα,emp.

Algorithm OA.1: Conducting a test of level α ∈ (0, 1) with lagged idiosyncratic terms.

B Additional simulation results
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p/T = 400/400 p/T = 2000/400

m α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

Design 1: s = ρf = ρu = ρe = 0

0.0 0.068 0.024 0.002 0.072 0.026 0.005

0.1 0.085 0.038 0.005 0.075 0.034 0.005

0.2 0.460 0.367 0.210 0.170 0.101 0.034

0.3 0.949 0.926 0.847 0.563 0.456 0.272

0.4 1.000 1.000 0.999 0.898 0.856 0.734

Design 2: s = 0.1, ρf = 0.6, ρu = 0.1 and ρe = 0

0.0 0.078 0.028 0.006 0.070 0.027 0.005

0.1 0.098 0.046 0.011 0.074 0.030 0.004

0.2 0.473 0.378 0.230 0.174 0.101 0.034

0.3 0.961 0.942 0.873 0.551 0.448 0.272

0.4 1.000 0.999 0.997 0.900 0.850 0.720

Design 3: s = 0.1, ρf = 0.6 and ρu = ρe = 0.1

0.0 0.088 0.035 0.007 0.084 0.032 0.005

0.1 0.112 0.052 0.014 0.086 0.037 0.007

0.2 0.470 0.373 0.226 0.185 0.102 0.035

0.3 0.961 0.935 0.870 0.555 0.439 0.264

0.4 1.000 0.999 0.996 0.895 0.843 0.721

Table OA.1: Rejection probabilities for the three dependence designs we consider and

sparse β∗. The data are generated with Gaussian variables. The sample size is T = 400

while the number of regressors is p ∈ {400, 2000}.
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p/T = 400/400 p/T = 2000/400

m α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

Design 1: s = ρf = ρu = ρe = 0

0.0 0.068 0.024 0.002 0.072 0.026 0.005

0.1 0.074 0.028 0.003 0.070 0.030 0.005

0.2 0.086 0.032 0.004 0.074 0.029 0.005

0.3 0.094 0.041 0.005 0.084 0.034 0.004

0.4 0.104 0.052 0.006 0.088 0.037 0.004

Design 2: s = 0.1, ρf = 0.6, ρu = 0.1 and ρe = 0

0.0 0.073 0.035 0.005 0.070 0.031 0.006

0.1 0.082 0.037 0.007 0.070 0.032 0.008

0.2 0.092 0.041 0.009 0.078 0.036 0.007

0.3 0.101 0.041 0.006 0.080 0.036 0.008

0.4 0.112 0.048 0.007 0.092 0.037 0.007

Design 3: s = 0.1, ρf = 0.6 and ρu = ρe = 0.1

0.0 0.090 0.043 0.006 0.078 0.035 0.007

0.1 0.094 0.044 0.009 0.083 0.038 0.008

0.2 0.110 0.046 0.008 0.087 0.041 0.009

0.3 0.116 0.052 0.007 0.094 0.046 0.009

0.4 0.131 0.056 0.007 0.103 0.044 0.010

Table OA.2: Rejection probabilities for the three dependence designs we consider and dense

β∗. The data are generated with Gaussian variables. The sample size is T = 400 while the

number of regressors is p ∈ {400, 2000}.
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p/T = 200/200 p/T = 1000/200

m α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

Design 1: s = ρf = ρu = ρe = 0

0.0 0.062 0.020 0.002 0.054 0.018 0.002

0.1 0.082 0.034 0.005 0.060 0.021 0.002

0.2 0.529 0.422 0.230 0.200 0.116 0.035

0.3 0.936 0.886 0.766 0.579 0.445 0.235

0.4 0.994 0.987 0.950 0.872 0.785 0.585

Design 2: s = 0.1, ρf = 0.6, ρu = 0.1 and ρe = 0

0.0 0.053 0.023 0.004 0.050 0.014 0.002

0.1 0.090 0.040 0.006 0.056 0.018 0.003

0.2 0.537 0.414 0.220 0.196 0.114 0.040

0.3 0.942 0.894 0.761 0.599 0.469 0.246

0.4 0.992 0.987 0.950 0.878 0.801 0.594

Design 3: s = 0.1, ρf = 0.6 and ρu = ρe = 0.1

0.0 0.065 0.025 0.003 0.060 0.018 0.002

0.1 0.096 0.048 0.006 0.070 0.023 0.004

0.2 0.530 0.410 0.218 0.210 0.114 0.040

0.3 0.936 0.892 0.755 0.593 0.467 0.242

0.4 0.993 0.986 0.950 0.876 0.799 0.590

Table OA.3: Rejection probabilities for the three dependence designs we consider, sparse

β∗ and with data generated with student-t(5) variables. The sample size is T = 200 while

the number of regressors is p ∈ {200, 1000}.
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p/T = 400/400 p/T = 2000/400

m α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

Design 1: s = ρf = ρu = ρe = 0

0.0 0.044 0.016 0.001 0.037 0.010 0.001

0.1 0.056 0.024 0.004 0.040 0.012 0.002

0.2 0.364 0.259 0.121 0.118 0.055 0.015

0.3 0.880 0.822 0.632 0.416 0.301 0.136

0.4 0.991 0.981 0.922 0.761 0.643 0.418

Design 2: s = 0.1, ρf = 0.6, ρu = 0.1 and ρe = 0

0.0 0.042 0.015 0.001 0.031 0.009 0.002

0.1 0.054 0.021 0.004 0.034 0.010 0.002

0.2 0.372 0.272 0.139 0.104 0.049 0.014

0.3 0.890 0.829 0.641 0.420 0.305 0.127

0.4 0.989 0.974 0.921 0.760 0.657 0.410

Design 3: s = 0.1, ρf = 0.6 and ρu = ρe = 0.1

0.0 0.050 0.013 0.001 0.039 0.011 0.002

0.1 0.056 0.021 0.004 0.040 0.012 0.001

0.2 0.374 0.268 0.142 0.114 0.054 0.014

0.3 0.883 0.820 0.633 0.414 0.302 0.128

0.4 0.989 0.974 0.919 0.753 0.656 0.404

Table OA.4: Rejection probabilities for the three dependence designs we consider, sparse

β∗ and with data generated with student-t(5) variables. The sample size is T = 400 while

the number of regressors is p ∈ {400, 2000}.
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p/T = 200/200 p/T = 1000/200

m α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

Design 1: s = ρf = ρu = ρe = 0

0.0 0.084 0.036 0.006 0.094 0.040 0.007

0.1 0.126 0.063 0.016 0.106 0.052 0.011

0.2 0.594 0.494 0.322 0.270 0.176 0.080

0.3 0.982 0.961 0.907 0.669 0.580 0.391

0.4 1.000 1.000 0.999 0.944 0.908 0.799

Design 2: s = 0.1, ρf = 0.6, ρu = 0.1 and ρe = 0

0.0 0.092 0.046 0.008 0.091 0.044 0.005

0.1 0.120 0.066 0.016 0.111 0.055 0.009

0.2 0.609 0.518 0.348 0.268 0.180 0.072

0.3 0.983 0.968 0.920 0.704 0.613 0.408

0.4 1.000 1.000 0.999 0.950 0.922 0.838

Design 3: s = 0.1, ρf = 0.6 and ρu = ρe = 0.1

0.0 0.091 0.041 0.006 0.091 0.039 0.001

0.1 0.115 0.063 0.014 0.109 0.052 0.005

0.2 0.607 0.517 0.347 0.267 0.178 0.067

0.3 0.980 0.964 0.918 0.700 0.611 0.405

0.4 0.997 0.999 0.997 0.948 0.922 0.835

Table OA.5: Rejection probabilities for the three dependence designs we consider, sparse

β∗ and using K = 5 as the number of factors while the true number of factors is K = 2.

The data are generated with Gaussian variables. The sample size is T = 200 while the

number of regressors is p ∈ {200, 1000}.
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p/T = 400/400 p/T = 2000/400

m α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

Design 1: s = ρf = ρu = ρe = 0

0.0 0.079 0.028 0.002 0.083 0.031 0.005

0.1 0.094 0.042 0.004 0.083 0.034 0.005

0.2 0.451 0.362 0.212 0.184 0.106 0.030

0.3 0.948 0.923 0.845 0.548 0.456 0.268

0.4 1.000 1.000 0.998 0.895 0.847 0.723

Design 2: s = 0.1, ρf = 0.6, ρu = 0.1 and ρe = 0

0.0 0.080 0.035 0.008 0.084 0.029 0.006

0.1 0.102 0.044 0.013 0.088 0.032 0.005

0.2 0.467 0.374 0.233 0.180 0.106 0.030

0.3 0.956 0.936 0.872 0.545 0.442 0.262

0.4 1.000 0.999 0.998 0.898 0.846 0.711

Design 3: s = 0.1, ρf = 0.6 and ρu = ρe = 0.1

0.0 0.077 0.034 0.007 0.084 0.029 0.004

0.1 0.102 0.040 0.011 0.088 0.032 0.003

0.2 0.465 0.371 0.231 0.176 0.103 0.029

0.3 0.956 0.933 0.870 0.540 0.438 0.259

0.4 0.995 0.996 0.996 0.896 0.842 0.711

Table OA.6: Rejection probabilities for the three dependence designs we consider, sparse

β∗ and using K = 5 as the number of factors while the true number of factors is K = 2.

The data are generated with Gaussian variables. The sample size is T = 400 while the

number of regressors is p ∈ {400, 2000}.
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p/T = 200/200 p/T = 1000/200

m α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

Design 1: s = ρf = ρu = ρe = 0

0.0 0.893 0.875 0.837 0.843 0.812 0.743

0.1 0.895 0.876 0.837 0.840 0.813 0.739

0.2 0.929 0.906 0.858 0.853 0.824 0.740

0.3 0.987 0.973 0.931 0.907 0.876 0.780

0.4 0.999 0.998 0.984 0.969 0.934 0.847

Design 2: s = 0.1, ρf = 0.6, ρu = 0.1 and ρe = 0

0.0 0.929 0.910 0.881 0.877 0.856 0.800

0.1 0.928 0.913 0.879 0.877 0.851 0.799

0.2 0.952 0.930 0.891 0.882 0.858 0.810

0.3 0.986 0.969 0.928 0.923 0.890 0.826

0.4 0.997 0.994 0.974 0.964 0.936 0.858

Design 3: s = 0.1, ρf = 0.6 and ρu = ρe = 0.1

0.0 0.925 0.912 0.879 0.884 0.858 0.804

0.1 0.929 0.915 0.885 0.879 0.850 0.804

0.2 0.951 0.925 0.892 0.888 0.855 0.805

0.3 0.984 0.971 0.930 0.918 0.885 0.821

0.4 0.997 0.994 0.976 0.964 0.934 0.856

Table OA.7: Rejection probabilities for the three dependence designs we consider, sparse

β∗ and using K = 1 as the number of factors while the true number of factors is K = 2.

The data are generated with Gaussian variables. The sample size is T = 200 while the

number of regressors is p ∈ {200, 1000}.
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p/T = 400/400 p/T = 2000/400

m α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

Design 1: s = ρf = ρu = ρe = 0

0.0 0.914 0.898 0.859 0.867 0.839 0.777

0.1 0.917 0.895 0.859 0.866 0.838 0.780

0.2 0.934 0.911 0.863 0.868 0.843 0.780

0.3 0.973 0.959 0.906 0.894 0.859 0.789

0.4 0.998 0.994 0.971 0.943 0.909 0.824

Design 2: s = 0.1, ρf = 0.6, ρu = 0.1 and ρe = 0

0.0 0.931 0.919 0.892 0.890 0.869 0.829

0.1 0.935 0.921 0.892 0.889 0.871 0.818

0.2 0.936 0.924 0.892 0.889 0.869 0.820

0.3 0.978 0.961 0.919 0.914 0.884 0.820

0.4 0.997 0.994 0.972 0.946 0.914 0.840

Design 3: s = 0.1, ρf = 0.6 and ρu = ρe = 0.1

0.0 0.930 0.919 0.892 0.890 0.866 0.829

0.1 0.933 0.922 0.891 0.889 0.865 0.819

0.2 0.940 0.923 0.892 0.891 0.869 0.815

0.3 0.977 0.961 0.920 0.914 0.884 0.821

0.4 0.998 0.993 0.972 0.945 0.914 0.838

Table OA.8: Rejection probabilities for the three dependence designs we consider, sparse

β∗ and using K = 1 as the number of factors while the true number of factors is K = 2.

The data are generated with Gaussian variables. The sample size is T = 400 while the

number of regressors is p ∈ {400, 2000}.
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p/T = 200/200 p/T = 1000/200

m α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

Design 1: s = ρf = ρu = ρe = 0

0.0 0.084 0.038 0.007 0.073 0.032 0.003

0.1 0.115 0.063 0.015 0.078 0.035 0.004

0.2 0.537 0.442 0.290 0.216 0.135 0.052

0.3 0.973 0.958 0.896 0.633 0.530 0.346

0.4 1.000 1.000 0.999 0.933 0.902 0.794

Design 2: s = 0.1, ρf = 0.6, ρu = 0.1 and ρe = 0

0.0 0.074 0.036 0.006 0.070 0.027 0.004

0.1 0.097 0.052 0.010 0.084 0.034 0.006

0.2 0.565 0.468 0.288 0.222 0.138 0.052

0.3 0.968 0.953 0.898 0.654 0.540 0.360

0.4 0.999 0.999 0.999 0.943 0.907 0.794

Design 3: s = 0.1, ρf = 0.6 and ρu = ρe = 0.1

0.0 0.089 0.042 0.010 0.084 0.030 0.004

0.1 0.112 0.059 0.014 0.093 0.038 0.008

0.2 0.571 0.460 0.282 0.226 0.135 0.055

0.3 0.969 0.951 0.895 0.647 0.535 0.355

0.4 0.999 0.999 0.999 0.935 0.897 0.792

Table OA.9: Rejection probabilities for the three dependence designs we consider, sparse

β∗ and lagged idiosyncratic terms. The data are generated with Gaussian variables. The

sample size is T = 200 while the number of regressors is p ∈ {200, 1000}.
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p/T = 400/400 p/T = 2000/400

m α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

Design 1: s = ρf = ρu = ρe = 0

0.0 0.070 0.028 0.005 0.061 0.027 0.005

0.1 0.081 0.038 0.011 0.064 0.028 0.004

0.2 0.400 0.320 0.184 0.127 0.066 0.016

0.3 0.932 0.903 0.823 0.467 0.373 0.206

0.4 1.000 0.999 0.995 0.862 0.812 0.664

Design 2: s = 0.1, ρf = 0.6, ρu = 0.1 and ρe = 0

0.0 0.078 0.036 0.006 0.059 0.020 0.001

0.1 0.088 0.042 0.008 0.062 0.024 0.002

0.2 0.418 0.320 0.184 0.130 0.070 0.021

0.3 0.936 0.905 0.823 0.491 0.388 0.236

0.4 0.999 0.998 0.995 0.878 0.826 0.693

Design 3: s = 0.1, ρf = 0.6 and ρu = ρe = 0.1

0.0 0.091 0.043 0.006 0.068 0.028 0.002

0.1 0.106 0.048 0.007 0.067 0.029 0.003

0.2 0.420 0.322 0.173 0.137 0.077 0.024

0.3 0.931 0.904 0.812 0.490 0.387 0.230

0.4 1.000 0.998 0.995 0.875 0.823 0.682

Table OA.10: Rejection probabilities for the three dependence designs we consider, sparse

β∗, and lagged idiosyncratic terms. The data are generated with Gaussian variables. The

sample size is T = 400 while the number of regressors is p ∈ {400, 2000}.
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C Additional empirical results

C.1 Macro application — FRED-QD

Category 10% 5% 1%

NIPA (23) 0.478 0.435 0.261

Industrial Production (16) 0.625 0.500 0.125

Employment and Unemployment (48) 0.688 0.562 0.375

Housing (10) 0.400 0.200 0.200

Inventories, Orders, and Sales (7) 0.286 0.286 0.286

Prices (36) 0.417 0.306 0.194

Earnings and Productivity (13) 0.692 0.692 0.692

Interest Rates (15) 0.400 0.400 0.133

Money and Credit (14) 0.571 0.571 0.500

Household Balance Sheets (8) 0.250 0.125 0.125

Stock Markets (1) 0.000 0.000 0.000

Exchange Rates (6) 0.833 0.833 0.333

Other (2) 0.000 0.000 0.000

Non-Household Balance Sheets (2) 0.500 0.500 0.000

Table OA.11: Rejection ratios for each category of the FRED-QD dataset over the sample

period 1959 Q3 to 2019 Q4. The sample size is T = 241 while the number of regressors

is p = 202. In parentheses, we report the number of series per category. Data source:

McCracken & Ng (2020).

C.2 Finance I: additional details on data and results

Variable name Full name Source

1 Market Market Dong et al. (2022)

2 Agric Agriculture French (2024)

3 Food Food Products French (2024)
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4 Soda Candy & Soda French (2024)

5 Beer Beer & Liquor French (2024)

6 Smoke Tobacco Products French (2024)

7 Toys Recreation French (2024)

8 Fun Entertainment French (2024)

9 Books Printing and Publishing French (2024)

10 Hshld Consumer Goods French (2024)

11 Clths Apparel French (2024)

12 Hlth Healthcare French (2024)

13 MedEq Medical Equipment French (2024)

14 Drugs Pharmaceutical Products French (2024)

15 Chems Chemicals French (2024)

16 Rubbr Rubber and Plastic Products French (2024)

17 Txtls Textiles French (2024)

18 BldMt Construction Materials French (2024)

19 Cnstr Construction French (2024)

20 Steel Steel Works Etc French (2024)

21 FabPr Fabricated Products French (2024)

22 Mach Machinery French (2024)

23 ElcEq Electrical Equipment French (2024)

24 Autos Automobiles and Trucks French (2024)

25 Aero Aircraft French (2024)

26 Ships Shipbuilding, Railroad Equipment French (2024)

27 Guns Defense French (2024)

28 Gold Precious Metals French (2024)

29 Mines Non-Metallic and Industrial Metal Mining French (2024)

30 Coal Coal French (2024)

31 Oil Petroleum and Natural Gas French (2024)

32 Util Utilities French (2024)

33 Telcm Communication French (2024)

34 PerSv Personal Services French (2024)
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35 BusSv Business Services French (2024)

36 Hardw Computers French (2024)

37 Softw Computer Software French (2024)

38 Chips Electronic Equipment French (2024)

39 LabEq Measuring and Control Equipment French (2024)

40 Paper Business Supplies French (2024)

41 Boxes Shipping Containers French (2024)

42 Trans Transportation French (2024)

43 Whlsl Wholesale French (2024)

44 Rtail Retail French (2024)

45 Meals Restaurants, Hotels, Motels French (2024)

46 Banks Banking French (2024)

47 Insur Insurance French (2024)

48 RlEst Real Estate French (2024)

49 Fin Trading French (2024)

50 Other Other French (2024)

Table OA.12: A list of return portfolios for the results in reported in Table 4. We use

average value weighted return.

NoDur∗∗ 0.013 Durbl∗∗∗ 0.004 Manuf∗∗∗ 0.001 Enrgy∗∗ 0.016 HiTec 0.533

Telcm 0.625 Shops∗∗ 0.049 Hlth 0.265 Utils 0.252 Other∗∗∗ 0.004

Table OA.13: P-values of industry excess returns (10 industry classification, see Table

OA.14) regressed on 100 characteristics. Bold entries with ∗, ∗∗, and ∗ ∗ ∗ indicate signifi-

cance at the 10%, 5% and 1% levels, respectively.

Variable name Full name Source

1 NoDur Consumer Nondurables French (2024)

2 Durbl Consumer Durables French (2024)

3 Manuf Manufacturing French (2024)
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4 Enrgy Oil, Gas, and Coal French (2024)

5 HiTec Computers, Software, and Business/Electronic Equipment French (2024)

6 Telcm Telephone and Television Transmission French (2024)

7 Shops Wholesale, Retail, and Some Services French (2024)

8 Hlth Healthcare, Medical Equipment, and Drugs French (2024)

9 Utils Utilities French (2024)

10 Other Other French (2024)

Table OA.14: A list of return portfolios for the results in reported in Table OA.13. We use

average value weighted return.

C.3 Finance II: additional details on data

Variable name Factor Source

1 MKT Market French (2024)

2 SMB Small-minus-Big French (2024)

3 HML High-minus-Low French (2024)

4 CMA Conservative-minus-Aggressive French (2024)

5 RMW Robust-minus-Weak French (2024)

6 ni me Earnings/price ratio Jensen et al. (2023)

7 fcf me Cash-flow/price ratio Jensen et al. (2023)

8 div12m me Dividend/price ratio Jensen et al. (2023)

9 taccruals at Accruals Jensen et al. (2023)

10 beta 60m 60 Month CAPM Beta Jensen et al. (2023)

11 turnover 126d Share turnover Jensen et al. (2023)

12 rmax5 rvol 21d Max Return to Volatility Jensen et al. (2023)

13 ivol ff3 21d Idiosync. vol. from the Fama-French 3-factor model Jensen et al. (2023)

14 ret 3 1 Momentum 1-3 Months Jensen et al. (2023)

15 ret 60 12 Momentum 12-60 Months Jensen et al. (2023)

Table OA.15: A list of observable factors used in Section 5.3.
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10 % 5 % 1 % Number of firms

Agric 0.000 0.000 0.000 2

Food 0.000 0.000 0.000 19

Soda 0.000 0.000 0.000 4

Beer 0.333 0.167 0.000 6

Smoke 0.000 0.000 0.000 1

Toys 0.000 0.000 0.000 5

Fun 0.000 0.000 0.000 2

Books 0.375 0.125 0.125 8

Hshld 0.105 0.053 0.000 19

Clths 0.000 0.000 0.000 9

Hlth 0.100 0.100 0.100 10

MedEq 0.053 0.000 0.000 19

Drugs 0.053 0.053 0.000 19

Chems 0.133 0.067 0.000 15

Rubbr 0.000 0.000 0.000 3

Txtls 0.000 0.000 0.000 5

BldMt 0.000 0.000 0.000 15

Cnstr 0.250 0.167 0.083 12

Steel 0.222 0.111 0.111 9

FabPr 0.000 0.000 0.000 1

Mach 0.163 0.116 0.047 43

ElcEq 0.167 0.167 0.083 12

Autos 0.000 0.000 0.000 14

Aero 0.083 0.083 0.000 12

Ships 0.000 0.000 0.000 1

Guns 0.000 0.000 0.000 4

Gold 1.000 1.000 0.833 6

Mines 0.000 0.000 0.000 2

Oil 0.286 0.286 0.036 28

Util 0.154 0.077 0.019 52
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Telcm 0.455 0.455 0.364 11

PerSv 0.000 0.000 0.000 5

BusSv 0.065 0.032 0.000 31

Hardw 0.000 0.000 0.000 12

Softw 0.100 0.050 0.000 20

Chips 0.206 0.059 0.029 34

LabEq 0.211 0.211 0.105 19

Paper 0.000 0.000 0.000 11

Boxes 0.000 0.000 0.000 3

Trans 0.050 0.000 0.000 20

Whlsl 0.179 0.143 0.071 28

Rtail 0.138 0.069 0.069 29

Meals 0.000 0.000 0.000 8

Banks 0.096 0.027 0.014 73

Insur 0.175 0.050 0.050 40

RlEst 0.000 0.000 0.000 5

Fin 0.077 0.077 0.000 13

Other 0.000 0.000 0.000 2

Table OA.16: Rejection ratios for each industry of the returns of firms in the dataset of

the application in Section 5.3 over the sample period January 1991 to December 2022, thus

T = 384 and p = 727. In the Column Number of firms , we report the number of firms per

industry in our sample. Industry classification is based on 49 industry portfolios of French

(2024), see Table OA.12 for a full list of industries. Data source: Jensen et al. (2023).

D On Theorem 1

This section contains material related to Theorem 1. In Section D.1, we define some useful

mathematical objects. The proof of Theorem 1 is given in Section D.2 and makes use of

results proved in later sections. Section D.3 contains some auxiliary lemmas on distribution

functions of random variables used in the proof of Theorem 1. Then, in Section D.4, we
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state and prove some lemmas on the probability of some events. Section D.5, contains

results on some sequences introduced in the proof of Theorem 1. Furthermore, Section

D.6 introduces results on the factors, the loadings and their estimators. Finally, Section

D.7 recalls pre-existing results on strong mixing sequences and high-dimensional Gaussian

vectors. Finally, Section D.8 discusses the rate condition in statement (ii) of Theorem 1.

Our proofs borrow ideas and results from Chernozhukov et al. (2013), Chernozhukov et al.

(2015), Lederer & Vogt (2021), Fan et al. (2024) and Fan et al. (2023).

D.1 Preliminaries

We introduce some concepts which are latter useful in proving Theorem 1.

First, we define (infeasible) estimators using the true number of factors. These are

all denoted using a “check” symbol. We let the columns of qF/
√
T be the eigenvectors

corresponding to the leading K eigenvalues of XX⊤ and qB = X⊤
qF ( qF⊤

qF )−1 = T−1X⊤
qF .

Let also qP = T−1
qF
(
qF⊤
qF/T

)−1
qF⊤ = T−1

qF qF⊤ be the projector on the vector space

generated by the columns of qF . The estimator of U is qU = X − qF qB⊤ =
(
IT − qP

)
X.

Similarly, we let qY =
(
IT − qP

)
Y be the estimator of Y −Fγ∗. The estimated loading qbjk

corresponds to the jth element of the kth column of qB. Let also qbj = (qbj1, . . . ,qbjK)
⊤. The

second-step LASSO estimator using the true number of factors is then given by

qβλ = argmin
β∈Rp

1

T

∥∥∥qY − qUβ
∥∥∥2
2
+ λ∥β∥1,

For t ∈ [T ], we denote by qyt the t
th element of qY and qut as the T×1 vector corresponding

to the tth row of qU . For a given λ > 0, let qελ,t = qyt − qu⊤
t
qβλ, t ∈ [T ]. The equivalent of

pQ(λ, e) is then

qQ(λ, e) =

∥∥∥∥∥ 2T
T∑
t=1

qutqελ,tet,

∥∥∥∥∥
∞

.

The estimator qqα(λ) of qα is the (1−α)-quantile of the distribution of qQ(λ, e) given X and

Y . Formally, qqα(λ) = inf
{
q : Pe( qQ(λ, e) ≤ q) ≥ 1− α

}
(recall that Pe(·) = P(·|X, Y )).

The analog of pλα is given by

qλα = inf{λ > 0 : qqα(λ
′) ≤ λ′ for all λ′ ≥ λ}.

Remark that, on the event { pK = K}, we have pF = qF , pB = qB, pU = qU , Ỹ = qY , pβλ = qβλ

and pλα = qλα.
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As in Lederer & Vogt (2021), we re-scale some quantities by multiplying them with
√
T/2. This re-scaling is convenient to apply some probabilistic results. For instance, we

let qΠ(µ, e) =
∥∥∥|W (µ, e)

∥∥∥
∞
, where

|W (µ, e) =
(
|W1(µ, e), . . . ,|Wp(µ, e)

)⊤
, with |Wj(µ, e) =

1√
T

T∑
t=1

qutjqε 2√
T
µ,tet.

Note that qΠ(µ, e) =
√
T
2
qQ(λ, e), for λ = 2√

T
µ. Similarly, for α ∈ (0, 1), we define

qπα(µ) = inf{q : Pe(qΠ(µ, e) ≤ q) ≥ 1− α};

qµα = inf{µ > 0 : qπα(µ
′) ≤ µ′ for all µ′ ≥ µ},

where qµα =
√
T
2
qλα.

Next, to be able to compare qΠ(e) with population analogs, we define several additional

quantities. Let Π(e) = ∥W (e)∥∞, where

W (e) = (W1(e), . . . ,Wp(e))
⊤ , with Wj(e) =

1√
T

T∑
t=1

utjεtet

and let µα be the (1 − α)−quantile of Π(e) conditionally on (F,U, E). Formally, µα =

inf{q : P∗
e(Π(e) ≤ q) ≥ 1− α}, where P∗

e(·) = P(·|F,U, E).

Moreover, we define Π∗ = ∥W ∗∥∞, where

W ∗ =
(
W ∗

1 , . . . ,W
∗
p

)⊤
, with W ∗

j =
1√
T

T∑
t=1

utjεt,

where µ∗
α is the (1−α) quantile of Π∗. Finally, we also set ΠG = ∥G∥∞ with G a Gaussian

vector with same covariance structure as W ∗ and let µG
α be the (1 − α)-quantile of ΠG.

Auxiliary lemmas concerning the distributions of Π(e), Π∗ and ΠG can be found in Section

D.3.

We also introduce the following useful quantities

∆ =

∥∥∥∥∥ 1T
T∑
t=1

utu
⊤
t ε

2
t − E

[
utu

⊤
t ε

2
t

]∥∥∥∥∥
∞

, R(µ, e) =
1√
T

∥∥∥|W (µ, e)−W (e)
∥∥∥
∞
,

for µ > 0 and the event Sµ =
{

2
T

∥∥∥qU⊤(qY − qUβ∗)
∥∥∥
∞

≤ 2√
T
µ
}
. The above terms and events

are controlled in Section D.4.
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The following sequences allow to bound some important terms in the proofs.

s
(1)
T =

√
log(T )

p4/q√
T
;

s
(2)
T =

√
log(T )

(
1

p
+

p
2
q

T
+

p
2
q
− 1

2

√
T

)
(∥φ∗∥2 ∨ 1);

s
(3)
T =

√
log(T )

(
1 +

p
4
q

T
+

1

p

)
;

s
(4)
T =

√
log(T )

((
p

4
qT

2
q
−1 +

T
2
q

p

)
+

(
1

T
+

1

p

)
∥φ∗∥22

)
;

s
(5)
T =

√
log(T )

p
2
q

√
T
;

s
(6)
T =

2

T 1/4

√
log(Tp)2∥β∗∥1s(3)T ;

s
(7)
T =

√
log(Tp)

s
(4)
T

T
;

s
(8)
T = K1 (∆)1/3 (1 ∨ 2 log(2p) ∨ log (1/∆))1/3 log(2p)1/3;

s
(9)
T = K2

[ (
T κ−1/2 + T 1− c

2
(1− 2

h
)
)
log(T ) log(p) + T−1/4 log(p)3/2 log(T ) + p

2
hT

1
h
− 1

2 log(p)2 log(T )

+
(
p log(p)

3
2
h−4 log(T ) log(Tp)

) 1
h−2

T− 1
4 + T

1
2
−cκ
(
p

1
h+1

√
1 ∨ log(p)

) ]
;

s
(10)
T =

1

T ∨ p
+ s

(9)
T ;

s
(11)
T = κ2

(√
2 log(2p) +

√
2 log(T ∨ p)

)
;

s
(12)
T = s

(6)
T

(
1 + s

(11)
T

)
+

√
T

2
s
(2)
T + s

(6)
T

(
1 + (1 + s

(6)
T )s

(11)
T +

√
T

2
s
(2)
T

)
+ s

(7)
T ;

s
(13)
T = s

(6)
T

(
1 + s

(11)
T

)
+ s

(7)
T ;

s
(14)
T = s

(9)
T +K3s

(12)
T

√
1 ∨ log

(
2p/s

(12)
T

)
+ s

(8)
T +

3

T
,

where K1, K2 and K3 are constants introduced in Lemmas D.2, D.1 and D.3, respectively.

The constant κ2 is defined in Assumption 3 and h and q are introduced in Assumptions 3

(iii) and 4. In Lemma D.8, we show that these sequences all go to 0 under Assumption 5.

Finally, we introduce the following events

S(1)
T =

{
∆ ≤ s

(1)
T

}
;

S(2)
T =

{∥∥∥∥∥ qU⊤(qY − qUβ∗)

T
− U⊤E

T

∥∥∥∥∥
∞

≤ s
(2)
T

}
;
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S(3)
T =

{
max
j∈[p]

1

T

T∑
t=1

qu2
tj ≤ s

(3)
T

}
;

S(4)
T =

{
max
j∈[p]

1

T

T∑
t=1

(
qutj ε̃t + f̃⊤

t φ
∗ − utjεt

)2
≤ s

(4)
T

}
;

S(5)
T =

{∥∥∥∥U⊤E
T

∥∥∥∥
∞

≤ s
(5)
T

}
,

where ε̃t denotes the tth element of
(
IT − qP

)
E and f̃t is the K × 1 vector corresponding

to the tth row of
(
IT − qP

)
F . We show that the probabilities of these events go to 1 with

T in Lemma D.5.

D.2 Proof of Theorem 1

Proof of (i). We want to show that when β∗ = 0, we have

P

(∥∥∥∥∥ pU⊤Ỹ

T

∥∥∥∥∥
∞

> pλα

)
≤ α + o(1). (OA.1)

First, we move from quantities depending on pK to quantities only depending on K. Notice

that

P

(∥∥∥∥∥ pU⊤Ỹ

T

∥∥∥∥∥
∞

> pλα

)

= P

({∥∥∥∥∥ pU⊤Ỹ

T

∥∥∥∥∥
∞

> pλα

}
∩
{
pK = K

})
+ P

({∥∥∥∥∥ pU⊤Ỹ

T

∥∥∥∥∥
∞

> pλα

}
∩
{
pK ̸= K

})

≤ P

({∥∥∥∥∥ qU⊤
qY

T

∥∥∥∥∥
∞

> qλα

}
∩
{
pK = K

})
+ P

(
pK ̸= K

)
,

where, we used the fact that, on the event { pK = K}, we have pU = qU , Ỹ = qY and pλα = qλα.

Now, using the formula P(C ∩ D) = P(C) + P(D) − P(C ∪ D) (where C and D are two

probabilistic events), we obtain

P

(∥∥∥∥∥ pU⊤Ỹ

T

∥∥∥∥∥
∞

> pλα

)
≤ P

(∥∥∥∥∥ qU⊤
qY

T

∥∥∥∥∥
∞

> qλα

)
+ P( pK = K)

− P

({∥∥∥∥∥ qU⊤
qY

T

∥∥∥∥∥
∞

> qλα

}
∪
{
pK = K

})
+ P

(
pK ̸= K

)
≤ P

(∥∥∥∥∥ qU⊤
qY

T

∥∥∥∥∥
∞

> qλα

)
+ P

(
pK ̸= K

)
(OA.2)
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≤ P

(∥∥∥∥∥ qU⊤
qY

T

∥∥∥∥∥
∞

> qλα

)
+ o(1), (OA.3)

where, in equation (OA.2), we used P(C ∪ D) ≥ P(C) and, in equation (OA.3), we used

Assumption 1. This yields

P

(∥∥∥∥∥ pU⊤Ỹ

T

∥∥∥∥∥
∞

> pλα

)
≤ P

(∥∥∥∥∥ qU⊤
qY

T

∥∥∥∥∥
∞

> qλα

)
+ o(1) (OA.4)

≤ P

(∥∥∥∥U⊤E
T

∥∥∥∥
∞
+

∥∥∥∥∥ qU⊤
qY

T
− U⊤E

T

∥∥∥∥∥
∞

> qλα

)
+ o(1)

≤ P
({∥∥∥∥U⊤E

T

∥∥∥∥
∞

> qλα − s
(2)
T

}
∩ S(2)

T

)
+ P

(
(S(2)

T )c
)
+ o(1)

≤ P
(∥∥∥∥U⊤E

T

∥∥∥∥
∞

> qλα − s
(2)
T

)
+ o(1), (OA.5)

where in the last line we used Lemma D.5 (ii).

Let us define

T1 = Sµ∗
α+s

(14)
T

∩ S(1)
T ∩ S(2)

T ∩ S(3)
T ∩ S(4)

T .

Note that, by Lemmas D.5 and D.7, and the fact that s
(14)
T → 0 by Lemma D.8 (iv), (v)

and (vi), the event T1 has probability going to 1− α.

Hence, by (OA.5), to show (OA.1), it suffices to prove that, on T1, we have

qλα ≥ 2√
T
µ∗
α+s

(14)
T

+ s
(2)
T . (OA.6)

Indeed, in this case, we would have

P

(∥∥∥∥∥ qU⊤
qY

T

∥∥∥∥∥
∞

> qλα

)
≤ P

(∥∥∥∥U⊤E
T

∥∥∥∥
∞

> qλα − s
(2)
T

)
+ o(1)

≤ P
({∥∥∥∥U⊤E

T

∥∥∥∥
∞

> qλα − s
(2)
T

}
∩ T1

)
+ P(T c

1 ) + o(1)

≤ P
({∥∥∥∥U⊤E

T

∥∥∥∥
∞

>
2√
T
µ∗
α+s

(14)
T

}
∩ T1

)
+ P(T c

1 ) + o(1)

= 0 + P(T c
1 ) + o(1) = α + o(1),

where, on the last line, we used Sµ∗
α+s

(14)
T

⊂ T1.

Let us therefore prove that, on T1, (OA.6) holds. To do so, we show that, on T1,

Pe

(
qΠ(µ, e) > µ

)
> α (OA.7)
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for µ = (1+ s
(6)
T )µ∗

α+s
(14)
T

+
√
T
2
s
(2)
T > µ∗

α+s
(14)
T

+
√
T
2
s
(2)
T , which implies that (OA.6) is true by

definition of qλα and the fact that qµα =
√
T
2
qλα. We have

Pe

(
qΠ(µ, e) > µ

)
≥ Pe (Π(e)−R(µ, e) > µ)

≥ Pe

(
Π(e)−R(µ, e) > µ,R(µ, e) ≤ s

(6)
T

√
µ+ s

(7)
T

)
≥ Pe

(
Π(e) > µ+ s

(6)
T

√
µ+ s

(7)
T

)
− Pe

(
R(µ, e) > s

(6)
T

√
µ+ s

(7)
T

)
≥ Pe

(
Π(e) > µ+ s

(6)
T

√
µ+ s

(7)
T

)
− 2

T
,

where, on the last line, we used Lemma D.6 and the facts that µ ≥ µ∗
α+s

(14)
T

and we work

on S(3)
T ∩S(4)

T ∩Sµ∗
α+s

(14)
T

⊂ T1 to obtain that Pe

(
R(µ, e) > s

(6)
T

√
µ+ s

(7)
T

)
≤ 2

T
. By Lemma

D.2, we obtain

Pe(Π(e) > µ+ s
(6)
T

√
µ+ s

(7)
T ) ≥ P(ΠG ≥ µ+ s

(6)
T

√
µ+ s

(7)
T )− s

(8)
T − 2

T
. (OA.8)

Since
√
µ ≤ (1 + µ), for T large enough, it holds that

P
(
(ΠG > µ+ s

(6)
T

√
µ+ s

(7)
T

)
≥ P

(
ΠG > µ+ s

(6)
T (1 + µ) + s

(7)
T

)
≥ P

(
ΠG > (1 + s

(6)
T )µ∗

α+s
(14)
T

+

√
T

2
s
(2)
T + s

(6)
T

(
1 + (1 + s

(6)
T )µ∗

α+s
(14)
T

+

√
T

2
s
(2)
T

)
+ s

(7)
T

)
≥ P

(
ΠG > µ∗

α+s
(14)
T

+ s
(12)
T

)
(OA.9)

≥ P
(
ΠG > µ∗

α+s
(14)
T

)− P(|ΠG − µ∗
α+s

(14)
T

| ≤ s
(12)
T

)
≥ P

(
ΠG > µ∗

α+s
(14)
T

)
−K3s

(12)
T

√
1 ∨ log

(
2p/s

(12)
T

)
(OA.10)

≥ P
(
Π∗ > µ∗

α+s
(14)
T

)
− s

(9)
T −K3s

(12)
T

√
1 ∨ log

(
2p/s

(12)
T

)
(OA.11)

= α + s
(14)
T − s

(9)
T −K3s

(12)
T

√
1 ∨ log

(
2p/s

(12)
T

)
,

where, in (OA.9), we used Lemma D.4 and the fact that s
(14)
T → 0 by Lemma D.8 (iv),

(v) and (vi), to obtain that µ∗
α+s

(14)
T

≤ s
(11)
T for T large enough, in (OA.10), we leveraged

Lemma D.3 and (OA.11) follows from Lemma D.1. This and (OA.8), therefore yield

Pe (Π(e) > µ) ≥ α + s
(14)
T − s

(9)
T −K3s

(12)
T

√
1 ∨ log

(
2p/s

(12)
T

)
− s

(8)
T − 2

T
= α +

1

T
> α,
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by definition of s
(14)
T . This shows (OA.7) and therefore concludes the proof of (i).

Proof of (ii). We want to show that if
√

log(T∨p)
T∧p = oP

(∥∥∥U⊤Uβ∗

T

∥∥∥
∞

)
, we have

P

(∥∥∥∥∥ pU⊤
pY

T

∥∥∥∥∥
∞

> pλα

)
→ 1. (OA.12)

As in the proof of (i), we first move from quantities depending on pK to quantities only

depending on K. Notice that

P

(∥∥∥∥∥ pU⊤Ỹ

T

∥∥∥∥∥
∞

> pλα

)

≥ P

({∥∥∥∥∥ pU⊤
pY

T

∥∥∥∥∥
∞

> pλα

}
∩
{
pK = K

})

= P

({∥∥∥∥∥ qU⊤
qY

T

∥∥∥∥∥
∞

> qλα

}
∩
{
pK = K

})

= P

(∥∥∥∥∥ qU⊤
qY

T

∥∥∥∥∥
∞

> qλα

)
− P

({∥∥∥∥∥ qU⊤
qY

T

∥∥∥∥∥
∞

> qλα

}
∩
{
pK ̸= K

})
(OA.13)

≥ P

(∥∥∥∥∥ qU⊤
qY

T

∥∥∥∥∥
∞

> qλα

)
− P

(
pK ̸= K

)
≥ P

(∥∥∥∥∥ qU⊤
qY

T

∥∥∥∥∥
∞

> qλα

)
+ o(1), (OA.14)

where, in (OA.13), we used the formula P(C) = P(C∩D)+P(C∩Dc), and (OA.14) follows

from Assumption 1. Hence, it holds that

P

(∥∥∥∥∥ pU⊤Ỹ

T

∥∥∥∥∥
∞

> pλα

)

≥ P

(∥∥∥∥∥ qU⊤
qY

T

∥∥∥∥∥
∞

> qλα

)

≥ P

(∥∥∥∥U⊤Uβ∗

T

∥∥∥∥
∞
−
∥∥∥∥U⊤E

T

∥∥∥∥
∞
−

∥∥∥∥∥ qU⊤(qY − qUβ∗)

T
− U⊤E

T

∥∥∥∥∥
∞

> qλα

)

≥ P
({∥∥∥∥U⊤Uβ∗

T

∥∥∥∥
∞

> qλα + s
(2)
T + s

(5)
T

}
∩ S(2)

T ∩ S(5)
T

)
≥ P

(∥∥∥∥U⊤Uβ∗

T

∥∥∥∥
∞

> qλα + s
(2)
T + s

(5)
T

)
− P

((
S(2)
T ∩ S(5)

T

)c)
= P

(∥∥∥∥U⊤Uβ∗

T

∥∥∥∥
∞

> qλα + s
(2)
T + s

(5)
T

)
+ o(1), (OA.15)
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where, in the last line, we used Lemma D.5.

Let us define

T2 = Sµ∗
2s

(10)
T

∩ S(1)
T ∩ S(2)

T ∩ S(3)
T ∩ S(4)

T ∩ S(5)
T .

Note that, by Lemmas D.5 and D.7, and the fact that s
(10)
T = 1

T∨p + s
(9)
T → 0 by Lemma

D.8 (v), the event T2 has probability going to 1.

Hence, by (OA.15), to show (OA.12), it suffices to prove that, on T2, we have

qλα ≤ 2√
T
µ∗
2s

(10)
T

, (OA.16)

for T large enough. Indeed, in this case, we would have

P

(∥∥∥∥∥ qU⊤
qY

T

∥∥∥∥∥
∞

≥ qλα

)
≥ P

(∥∥∥∥U⊤Uβ∗

T

∥∥∥∥
∞

> qλα + s
(2)
T + s

(5)
T

)
+ o(1),

≥ P
({∥∥∥∥U⊤Uβ∗

T

∥∥∥∥
∞

>
2√
T
µ∗
2s

(10)
T

+ s
(2)
T + s

(5)
T

}
∩ T2

)
+ o(1)

≥ P
({∥∥∥∥U⊤Uβ∗

T

∥∥∥∥
∞

>
2√
T
s
(11)
T + s

(2)
T + s

(5)
T

}
∩ T2

)
+ o(1)

≥ P
(∥∥∥∥U⊤Uβ∗

T

∥∥∥∥
∞

>
2√
T
s
(11)
T + s

(2)
T + s

(5)
T

)
− P(T c

2 ) + o(1) → 1,

where, in the third line, we used µ∗
2s

(10)
T

≤ s
(11)
T by Lemma D.4 and, in the last line, we

leveraged the facts 2√
T
s
(11)
T + s

(2)
T + s

(5)
T = OP

(√
log(T∨p)

T∧p

)
by Lemma D.8 (ii) and that√

log(T∨p)
T∧p = oP

(∥∥∥U⊤Uβ∗

T

∥∥∥
∞

)
to obtain that P

(∥∥∥U⊤Uβ∗

T

∥∥∥
∞

> 2√
T
s
(11)
T + s

(2)
T + s

(5)
T

)
→ 1.

Let us therefore prove that, on T2, (OA.16) holds for T large enough. To do so, we show

that, on T2, for T large enough,

Pe

(
qΠ(µ∗

2s
(10)
T

, e) > µ∗
2s

(10)
T

)
≤ α, (OA.17)

which implies (OA.16) by definition of qλα. On T2, we have

Pe

(
qΠ(µ∗

2s
(10)
T

, e) > µ∗
2s

(10)
T

)
≤ Pe

(
Π(e) +R(µ∗

2s
(10)
T

, e) > µ
)

≤ Pe

(
Π(e) > µ∗

2s
(10)
T

−R(µ∗
2s

(10)
T

, e), R(µ∗
2s

(10)
T

, e) ≤ s
(6)
T

√
µ∗
2s

(10)
T

+ s
(7)
T

)
+ Pe

(
R(µ∗

2s
(10)
T

, e) > s
(6)
T

√
µ∗
2s

(10)
T

+ s
(7)
T

)
≤ Pe

(
Π(e) > µ∗

2s
(10)
T

− s
(6)
T

√
µ∗
2s

(10)
T

− s
(7)
T

)
+

2

T
,
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where, in the last line, we used Lemma D.6. By Lemma D.2, we obtain

Pe

(
Π(e) > µ∗

2s
(10)
T

)
≤ P

(
ΠG ≥ µ∗

2s
(10)
T

− s
(6)
T

√
µ∗
2s

(10)
T

− s
(7)
T

)
+ s

(8)
T +

2

T
. (OA.18)

Since
√
µ∗
2s

(10)
T

≤ 1 + µ∗
2s

(10)
T

, it holds that

P
(
ΠG > µ∗

2s
(10)
T

− s
(6)
T

√
µ∗
2s

(10)
T

− s
(7)
T

)
≤ P

(
ΠG > µ∗

2s
(10)
T

− s
(6)
T (1 + µ∗

2s
(10)
T

)− s
(7)
T

)
≤ P

(
ΠG > µ∗

2s
(10)
T

− s
(6)
T (1 + s

(11)
T )− s

(7)
T

)
(OA.19)

= P
(
ΠG > µ∗

2s
(10)
T

− s
(13)
T

)
≤ P

(
ΠG > µ∗

2s
(10)
T

)
+ P

(
|ΠG − µ∗

2s
(10)
T

| ≤ s
(13)
T

)
≤ P

(
ΠG > µ∗

2s
(10)
T

)
+K3s

(13)
T

√
1 ∨ log

(
2p/s

(13)
T

)
(OA.20)

≤ P
(
Π∗ > µ∗

2s
(10)
T

)
+ s

(9)
T +K3s

(13)
T

√
1 ∨ log

(
2p/s

(13)
T

)
(OA.21)

= 2s
(10)
T + s

(9)
T +K3s

(13)
T

√
1 ∨ log

(
2p/s

(13)
T

)
,

where, in (OA.19), we used Lemma D.4 to obtain that µ∗
2s

(10)
T

≤ s
(11)
T , in (OA.20), we

leveraged Lemma D.3 and (OA.21) follows from Lemma D.1. This and (OA.18), therefore

yield

Pe

(
Π(e) > µ∗

2s
(10)
T

)
≤ 2s

(10)
T + s

(9)
T +K3s

(13)
T

√
1 ∨ log

(
2p/s

(13)
T

)
+ s

(8)
T +

2

T
≤ α,

for T large enough by Lemma D.8 (iv), (v), (vi). This shows that (OA.17) holds and

therefore concludes the proof of (ii).

D.3 Auxiliary lemmas on distributions

Lemma D.1 Under the assumptions of Theorem 1, it holds that

sup
z∈R

∣∣P(Π∗ ≤ z)− P
(
ΠG ≤ z

)∣∣ < s
(9)
T .

Proof. The result is a direct consequence of Lemma D.18 applied to Zt = utεt (and the

constant K1 used in the definition of s
(9)
T is introduced in Lemma D.18). Condition (i) of
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Lemma D.18 is satisfied by Lemma D.15 and Assumption 3 (iii). Assumption 4 implies

that conditions (ii) and (iii) hold. Concerning condition (iv), note that, by Assumption 3

(iv), we have

E

( 1√
T

T∑
t=1

utεt

)(
1√
T

T∑
t=1

utεt

)⊤
 =

1

T

T∑
t=1

T∑
s=1

E
[
utεtu

⊤
s εs
]
= E

[
utu

⊤
t ε

2
t

]
.

By Assumption 3 (ii), this implies that

σp

E

( 1√
T

T∑
t=1

utεt

)(
1√
T

T∑
t=1

utεt

)⊤
 = σp

(
E
[
utu

⊤
t ε

2
t

])
≥ κ1 > 0,

and therefore that condition (iv) holds. 2

Lemma D.2 Let the assumptions of Theorem 1 hold. On the event S(1)
T ,

sup
z∈R

∣∣Pe(Π(e) ≤ z)− P
(
ΠG ≤ z

)∣∣ ≤ s
(8)
T .

Proof. Conditionally on U, E , W (e) is a centered Gaussian vector with covariance matrix

T−1
∑T

t=1 utu
⊤
t ε

2
t . Moreover, G is a centered Gaussian vector with covariance matrix

E

( 1√
T

T∑
t=1

utεt

)(
1√
T

T∑
t=1

utεt

)⊤
 = E

[
ε2tutu

⊤
t

]
,

see the proof of Lemma D.1 for a justification of this equality. Remark that, by Assumption

3 (ii),

κ2 > E
[
utju

⊤
tjε

2
t

]
> κ1,

for all j ∈ [p]. We can therefore apply Lemma D.20 to get

sup
z∈R

∣∣Pe(Π(e) ≤ z)− P
(
ΠG ≤ z

)∣∣ ≤ π(∆),

where π(∆) = K1∆
1/3(1 ∨ log(2p) ∨ log(1/∆))1/3 log(2p)1/3.

2

Lemma D.3 Under the assumptions of Theorem 1, there exists a constant K2 > 0 such

that, for all z1, z2 > 0, we have

P
(∣∣ΠG − z1

∣∣ ≤ z2
)
≤ K2z2

√
1 ∨ log(2p/z2).
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Proof. This is a direct consequence of Lemma D.19 of which the conditions are satisfied

by Assumption 3 (see the proofs of Lemmas D.1 and D.2 for more details). 2

Lemma D.4 For every α > s
(10)
T , we have

µ∗
α ≤ s

(11)
T .

Proof. Notice that, by Assumption 3 (iv),

E
[
(W ∗

j )
2
]
= E

( 1√
T

T∑
t=1

utjεt

)2
 = E

[
u2
tjε

2
t

]
,

which, by Assumption 3 (ii) and (iv), is bounded uniformly in j and t by κ2 > 0. Using

Lemma 7 in Chernozhukov et al. (2015) and remark A.8 in Lederer & Vogt (2021), we have,

for every r > 0,

P (∥G∥∞ ≥ E [∥G∥∞] + r) ≤ exp

(
− r2

2κ2

)
.

Taking r = κ2

√
2 log(T ∨ p), we get

P
(
∥G/κ2∥∞ ≥ E [∥G/κ2∥∞] +

√
2 log(T ∨ p)

)
≤ 1

T ∨ p
.

By the Gaussian maximal inequality (see e.g., Exercise 2.17 in Boucheron et al. (2013)), it

holds that E [∥G/κ2∥∞] ≤
√
2 log(2p), which yields

P
(
∥G∥∞ ≥ κ2

(√
2 log(2p) +

√
2 log(T ∨ p)

))
≤ 1

T ∨ p
,

so that µG
α ≤ κ2

(√
2 log(2p) +

√
2 log(T ∨ p)

)
for α > 1/(T ∨p) by definition of µG

α . Now,

for α > s
(10)
T = (T ∨ p)−1 + s

(9)
T , by Lemma D.1, we have

P
(
Π∗ ≥ µG

α−s
(9)
T

)
≤ P

(
ΠG ≥ µG

α−s
(9)
T

)
+ s

(9)
T ≤ α− s

(9)
T + s

(9)
T = α.

Hence, we obtain µ∗
α ≤ µG

α−s
(9)
T

≤ κ2

(√
2 log(2p) +

√
2 log(T ∨ p)

)
. 2
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D.4 Auxiliary lemmas on probabilistic events

Lemma D.5 Under the assumptions of Theorem 1, it holds that

(i) P
(
S(1)
T

)
→ 1;

(ii) P
(
S(2)
T

)
→ 1;

(iii) P
(
S(3)
T

)
→ 1;

(iv) P
(
S(4)
T

)
→ 1;

(v) P
(
S(5)
T

)
→ 1.

Proof.

Result (i) follows directly from Lemma D.9 (v); (ii) is a consequence of Lemma D.14; (iii)

comes from Lemmas D.10 (vi) and Lemma D.9 (i) and the triangle inequality, (iv) follows

from Lemma D.13 and (v) is a direct consequence of Lemma D.9 (iii). 2

Lemma D.6 Let the assumptions of Theorem 1 hold. On the event S(3)
T ∩ S(4)

T ∩ Sµ, we

have, for all µ′ ≥ µ,

Pe

(
R(µ′, e) ≥ s

(6)
T

√
µ′ + s

(7)
T

)
≤ 2

T
.

Proof. Take µ′ ≥ µ. Remember that qY =
(
IT − qP

)
(Xβ + Fφ∗ + E). This yields that

qε 2√
T
µ′,t = ỹt − qu⊤

t
qβ 2√

T
µ′ = qut

(
β∗ − qβ 2√

T
µ′

)
+ f̃⊤

t φ
∗ + ε̃t,

where we recall that ε̃t is the tth element of
(
IT − qP

)
E and f̃t is the K × 1 vector corre-

sponding to the tth row of
(
IT − qP

)
F . This yields

R(µ′, e)

=
1√
T

∥∥∥|W (µ′, e)−W (e)
∥∥∥
∞

=
1

T
max
j∈[p]

∣∣∣∣∣
T∑
t=1

qutjqε 2√
T
µ′,tet −

T∑
t=1

utjεtet

∣∣∣∣∣
≤ 1

T
max
j∈[p]

∣∣∣∣∣
T∑
t=1

qutjqu
⊤
t

(
β∗ − qβ 2√

T
µ′

)
et

∣∣∣∣∣+ 1

T
max
j∈[p]

∣∣∣∣∣
T∑
t=1

(
qutj ε̃t + f̃⊤

t φ
∗ − utjεt

)
et

∣∣∣∣∣ . (OA.22)
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Now, we bound the two terms in (OA.22). We start with maxj∈[p]

∣∣∣∑T
t=1 qutjqu

⊤
t

(
β∗ − qβ 2√

T
µ′

)
et

∣∣∣.
Remark that given (F,U, E), we have

1

T

T∑
t=1

qutjqu
⊤
t

(
qβλ − β∗

)
et ∼ N

(
0,

1

T 2

T∑
t=1

(
qutjqu

⊤
t

(
qβλ − β∗

))2)
By the Gaussian tail bound (equation (2.10) in Vershynin (2018)), for z > 0, we obtain,

for all j ∈ [p] and z > 0,

P∗
e

(∣∣∣∣∣ 1T
T∑
t=1

qutjqu
⊤
t

(
qβλ − β∗

)
et

∣∣∣∣∣ > z

)
≤ 2 exp

− z2

1
T 2

∑T
t=1

(
qutjqu⊤

t

(
qβλ − β∗

))2
 .

(OA.23)

Next, let λ = 2√
T
µ and λ′ = 2√

T
µ′. By definition of qβλ′ , it holds that

1

T

∥∥∥qY − qU qβλ′

∥∥∥2
2
+ λ′

∥∥∥qβλ

∥∥∥
1
≤ 1

T

∥∥∥qY − qUβ∗
∥∥∥2
2
+ λ∥β∗∥1.

This yields

1

T

∥∥∥qU(β∗ − qβλ′)
∥∥∥2
2

≤ 2

T

(
qY − qUβ∗

)⊤
qU
(
qβλ′ − β∗

)
+ λ′

(
∥β∗∥1 −

∥∥∥qβλ′

∥∥∥
1

)
≤ 2

T

∥∥∥qU⊤
(
qY − qUβ∗

)∥∥∥
∞

∥∥∥qβλ′ − β∗
∥∥∥
1
+ λ′

(
∥β∗∥1 −

∥∥∥qβλ′

∥∥∥
1

)
≤ λ′∥qβλ′ − β∗∥1 + λ′

(
∥β∗∥1 −

∥∥∥qβλ′

∥∥∥
1

)
≤ 2λ′∥β∗∥1. (OA.24)

where we used Hölder’s inequality and the fact that we work on Sµ. Moreover, we have

1

T 2

T∑
t=1

(qutjqu
⊤
t (
qβλ − β∗))2 ≤ 1

T

T∑
t=1

qu2
tj

1

T

∥∥∥qU (β∗ − qβλ

)∥∥∥2
2

≤ s
(3)
T 2λ′∥β∗∥1,

(OA.25)

by (OA.24) and because we work on S(3)
T . Recall that s

(6)
T = 2

√
log(Tp)∥β∗∥1s(3)T T−1/2.

Using (OA.23), (OA.25) and the union bound, we get

P∗
e

(
1

T
max
j∈[p]

∣∣∣∣∣
T∑
t=1

qutjqu
⊤
t

(
β∗ − qβ 2√

T
µ′

)
et

∣∣∣∣∣
∞

> s
(6)
T

√
µ′

)

≤ pmax
j∈[p]

P∗
e

(∣∣∣∣∣ 1T
T∑
t=1

qutjqu
⊤
t

(
qβλ − β∗

)
et

∣∣∣∣∣ > s
(6)
T

√
µ′

)
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≤ exp

(
− (s

(6)
T )2µ′

2λ′∥β∗∥1s(3)T

+ log(p)

)
= T−1. (OA.26)

Let us now bound the term maxj∈[p]

∣∣∣∑T
t=1

(
qutj ε̃t + f̃⊤

t φ
∗ − utjεt

)
et

∣∣∣. Conditional on

(F,U, E), we have

1

T

T∑
t=1

(
qutj ε̃t + f̃⊤

t φ
∗ − utjεt

)
et ∼ N

(
0,

1

T 2

T∑
t=1

(
qutj ε̃t + f̃⊤

t φ
∗ − utjεt

)2)
.

Since we work on S(4)
T , by the Gaussian tail bound, this yields, for all j ∈ [p] and z > 0,

P∗
e

(∣∣∣∣∣ 1T
T∑
t=1

(
qutj ε̃t + f̃⊤

t φ
∗ − utjεt

)
et

∣∣∣∣∣ > z

)
≤ exp

(
−Tz2

s
(4)
T

)
.

Recall that s
(7)
T =

√
log(Tp)T−1s

(4)
T . Using the union bound, we get

P∗
e

(
max
j∈[p]

∣∣∣∣∣ 1T
T∑
t=1

(
qutj ε̃t + f̃⊤

t φ
∗ − utjεt

)
et

∣∣∣∣∣ > s
(7)
T

)

≤ pmax
j∈[p]

Pe

(∣∣∣∣∣ 1T
T∑
t=1

(
qutj ε̃t + f̃⊤

t φ
∗ − utjεt

)
et

∣∣∣∣∣ > s
(7)
T

)

≤ p exp

−

(
s
(7)
T

)2
T−1s

(4)
T

 = T−1. (OA.27)

Using the pigeonhole principle, (OA.22), (OA.26) and (OA.27), we get P∗
e

(
R(µ′, e) ≥ s

(6)
T

√
µ′ + s

(7)
T

)
≤

2T−1, which yields Pe

(
R(µ′, e) ≥ s

(6)
T

√
µ′ + s

(7)
T

)
≤ 2T−1, integrating over the distribution

of (F,U, E).

2

Lemma D.7 Under the assumptions of Theorem 1, we have

sup
α′∈(0,1)

∣∣∣P(Sµ∗
α′

)
− (1− α′)

∣∣∣ = o(1).

Proof. Let us first bound P
(
Sµ∗

α′

)
from above. For α′ ∈ (0, 1), we have

P
(
Sµ∗

α′

)
= P

(
2

∥∥∥∥∥ qU⊤(qY − qUβ∗)

T

∥∥∥∥∥
∞

≤ 2√
T
µ∗
α′

)
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≤ P

(∥∥∥∥U⊤E
T

∥∥∥∥
∞
−

∥∥∥∥∥ qU⊤(qY − qUβ∗)

T
− U⊤E

T

∥∥∥∥∥
∞

≤ 1√
T
µ∗
α′

)

≤ P

({∥∥∥∥U⊤E
T

∥∥∥∥
∞
−

∥∥∥∥∥ qU⊤(qY − qUβ∗)

T
− U⊤E

T

∥∥∥∥∥
∞

≤ 1√
T
µ∗
α′

}
∩ S(2)

T

)
+ P

((
S(2)
T

)c)
≤ P

(∥∥∥∥U⊤E
T

∥∥∥∥
∞

≤ 1√
T
µ∗
α′ + s

(2)
T

)
+ P

((
S(2)
T

)c)
. (OA.28)

Now, we have

P
(∥∥∥∥U⊤E

T

∥∥∥∥
∞

≤ 1√
T
µ∗
α′ + s

(2)
T

)
= P

(
Π∗ ≤ µ∗

α′ +
√
Ts

(2)
T

)
≤ P

(
ΠG ≤ µ∗

α′ +
√
Ts

(2)
T

)
+ s

(9)
T

≤ P
(
ΠG ≤ µ∗

α′

)
+ P

(∣∣ΠG − µ∗
α′

∣∣ ≤ √
Ts

(2)
T

)
+ s

(9)
T

≤ P (Π∗ ≤ µ∗
α′) + P

(∣∣ΠG − µ∗
α′

∣∣ ≤ √
Ts

(2)
T

)
+ 2s

(9)
T

≤ 1− α′ + P
(∣∣ΠG − µ∗

α′

∣∣ ≤ √
Ts

(2)
T

)
+ 2s

(9)
T , (OA.29)

where we used Lemma D.1 in the second and fourth lines. By Lemma D.3, we have

P
(∣∣ΠG − µ∗

α′

∣∣ ≤ s
(2)
T

)
≤ K4

√
Ts

(2)
T

√√√√1 ∨ log

(
2p

√
Ts

(2)
T

)
.

Combining this, (OA.28) and (OA.29), we get

P
(
Sµ∗

α′

)
≤ 1− α′ + P

((
S(2)
T

)c)
+K4

√
Ts

(2)
T

√√√√1 ∨ log

(
2p

√
Ts

(2)
T

)
+ 2s

(9)
T . (OA.30)

By a similar reasoning, we can show that

P
(
Sµ∗

α′

)
≥ 1− α′ − P

((
S(2)
T

)c)
−K4

√
Ts

(2)
T

√√√√1 ∨ log

(
2p

√
Ts

(2)
T

)
− 2s

(9)
T . (OA.31)

Since
√
Ts

(2)
T

√
1 ∨ log

(
2p√
Ts

(2)
T

)
→ 0, s

(8)
T → 0, s

(9)
T → 0 by Lemma D.8 (iii), (iv), (v) and

P
((

S(2)
T

)c)
→ 0 by Lemma D.5 (ii), (OA.30) and (OA.31) yield the result 2

D.5 Auxiliary lemma on sequences

Lemma D.8 Under Assumption 5, we have
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(i) s
(12)
T

√
1 ∨ log

(
2p/s

(12)
T

)
= o(1);

(ii) 2T−1/2s
(11)
T + s

(2)
T + s

(5)
T = O

(√
log(T∨p)
(T∧p) p

2
q

)
(∥φ∗∥2 ∨ 1);

(iii)
√
Ts

(2)
T

√
1 ∨ log

(
2p√
Ts

(2)
T

)
= o(1);

(iv) s
(8)
T = oP (1);

(v) s
(9)
T = o(1);

(vi) s
(13)
T

√
1 ∨ log

(
2p/s

(13)
T

)
= o(1).

Proof.

Proof of (i). By Assumption 5 (i), we have s
(3)
T = O

(√
log(T )

)
, so that

s
(6)
T = O

((
log(T ∨ p)2√

T
∥β∗∥1

)1/2
)
. (OA.32)

Since s
(11)
T = O

(√
log(T ∨ p)

)
, this yields

s
(6)
T s

(11)
T = O

((
log(T ∨ p)3√

T
∥β∗∥1

)1/2
)
. (OA.33)

We also have (
s
(6)
T

)2
s
(11)
T = O

((
log(T ∨ p)3√

T
∥β∗∥1

)1/2
)
, (OA.34)

because s
(6)
T = o(1) by (OA.32) and Assumption 5 (ii). Next, it holds that

s
(2)
T = O

(√
log(T )p

2
q

T ∧ p
(∥φ∗∥2 ∨ 1)

)
, (OA.35)

so that

s
(6)
T s

(2)
T = o

(
s
(2)
T

)
, (OA.36)

since s
(6)
T = o(1) by (OA.32) and Assumption 5 (ii). Moreover, it holds that

s
(4)
T = O

(√
log(T )

p
4
qT

2
q

T ∧ p

(
∥φ∗∥22 ∨ 1

))
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and, therefore,

s
(7)
T = O

√ log(T ∨ p)2p
4
qT

2
q

T (T ∧ p)
(∥φ∗∥2 ∨ 1)

 . (OA.37)

Recall that

s
(12)
T = 2s

(6)
T + 2s

(6)
T s

(11)
T +

(
s
(6)
T

)2
s
(11)
T +

√
T

2
s
(2)
T +

√
T

2
s
(6)
T s

(2)
T + s

(7)
T .

By (OA.32), (OA.33), (OA.34), (OA.35), (OA.36), (OA.37), we obtain

s
(12)
T = O

( log(T ∨ p)3√
T

∥β∗∥1
)1/2

+

 log(T ∨ p)3/2
√
T

(T ∧ p)
+

√
log(T ∨ p)2p

4
qT

2
q

T (T ∧ p)

 (∥φ∗∥2 ∨ 1)


= O

( log(T ∨ p)3√
T

∥β∗∥1
)1/2

+
log(T ∨ p)3/2

√
T

(T ∧ p)

1 +

√
p

4
qT

2
q

T

 (∥φ∗∥2 ∨ 1)

 .

(OA.38)

Additionally, we have (T (T ∧ p))−1/2 = oP

(
s
(7)
T

)
= O

(
s
(12)
T

)
so that log

(
2p/s

(12)
T

)
=

O
(
log(2p) + log

(√
T (T ∧ p)

))
= O(log(T ∨ p)). This and (OA.38) imply

s
(12)
T

√
1 ∨ log

(
2p/s

(12)
T

)
= O

( log(T ∨ p)5√
T

∥β∗∥1
)1/2

+
log(T ∨ p)5/2

√
T

(T ∧ p)

1 +

√
p

4
qT

2
q

T

 (∥φ∗∥2 ∨ 1)

 = o(1),

by Assumption 5 and the fact that q ≥ 8.

Proof of (ii). The result follows directly from Assumption 5 and (OA.35).

Proof of (iii). We have (T ∧ p)−1 = oP

(√
Ts

(2)
T

)
, hence log

(
2p√
Ts

(2)
T

)
= O(log(T ∨ p)), so

that

√
Ts

(2)
T

√√√√1 ∨ log

(
2p

√
Ts

(2)
T

)

= O

(
log(T ∨ p)

3
2

√
T

(
1

p
+

p
2
q

T
+

p
2
q
− 1

2

√
T

)
(∥φ∗∥2 ∨ 1)

)
= o(1)

by the definition of s
(2)
T and Assumption 5.
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Proof of (iv). We have ∆ = oP (1) by the facts that P(S(1)
T ) → 1 and that s

(1)
T = o(1) by

Assumption 5. This yields the result using that lim
x→0+

x log(x) → 0.

Proof of (v). Recall that

s
(9)
T = K1

[ (
T κ−1/2 + T 1− c

2
(1− 2

h
)
)
log(T ) log(p) + T−1/4 log(p)3/2 log(T )

+ p
2
hT

1
h
− 1

2 log(p)2 log(T )

+
(
p log(p)

3
2
h−4 log(T ) log(Tp)

) 1
h−2

T− 1
4 + T

1
2
−cκ
(
p

1
h+1

√
1 ∨ log(p)

) ]
= OP

((
T κ−1/2 + T 1− c

2
(1− 2

h
)
)
log(T ) log(T r) + T−1/4 log(T r)3/2 log(T )

+ T
2r
h
+ 1

h
− 1

2 log(T r)2 log(T )

+
(
log(T r)

3
2
h−4 log(T ) log(T r+1)

) 1
h−2

T
r

h−2
− 1

4 + T
r

h+1
+ 1

2
−cκ
√

1 ∨ log(T r)
)
.

By Assumption 4, we have κ− 1/2 < 0 and 1− c
2
(1− 2

h
) < 0, so that(

T κ−1/2 + T 1− c
2
(1− 2

h
)
)
log(T ) log(T r) → 0.

As r is finite, T−1/4 log(T r)3/2 log(T ) → 0. Moreover, since r < h
4
− 1

2
, we have

T
2r
h
+ 1

h
− 1

2 log(T r)2 log(T ) → 0

and (
log(T r)

3
2
h−4 log(T ) log(T r+1)

) 1
h−2

T
r

h−2
− 1

4 → 0

Additionally, it holds that T
r

h+1
+ 1

2
−cκ
√

1 ∨ log(T r) → 0 because r < (h + 1)(cκ − 1
2
). All

of this yields (v).

Proof of (vi). The proof is similar to that of (i) and therefore omitted. 2

D.6 Auxiliary lemmas on factors and loadings

In this Section, we prove useful results on the factors, the factor loadings and their estima-

tors. LetH = T−1V −1
qF⊤FB⊤B, where V is theK×K matrix corresponding theK largest

eigenvalues of T−1XX⊤. Recall that the estimated loadings are qB = X⊤
qF
(
qF⊤
qF
)−1

=
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T−1X⊤
qF and qbj and bj are the K × 1 vectors corresponding to the jth rows of qB and B,

respectively.

Lemma D.9 Under the assumptions of Theorem 1, the following holds:

(i) maxj∈[p]

∣∣∣∑T
t=1 u

2
tj

∣∣∣ = OP (T );

(ii) maxj∈[p],k∈[K]

∣∣∣∑T
t=1 utjftk

∣∣∣ = OP

(
p

2
q

√
T
)
;

(iii)
∥∥U⊤E

∥∥
∞ = OP

(
p

2
q

√
T
)
;

(iv) maxj∈[p],k∈[K]

∣∣∣∑T
t=1 utj (

∑p
ℓ=1 utℓbℓk)

∣∣∣ = OP

(√
Tp

2
q
+ 1

2 + T
)
;

(v)
∥∥∥ 1
T

∑T
t=1 utu

⊤
t ε

2
t − E

[
utu

⊤
t ε

2
t

]∥∥∥
∞

= OP

(
p4/q√

T

)
;

(vi) ∥E∥2 = OP

(√
T
)
;

(vii) ∥F∥2 = OP

(√
T
)
;

(viii)
∥∥ 1
T
F⊤F − IK

∥∥
2
= OP

(
1√
T

)
;

(ix ) ∥U∥2 = OP

(√
Tp
)
;

(x )
∥∥F⊤E

∥∥
2
= OP

(√
T
)
;

(xi) ∥UB∥2 = OP

(√
Tp
)
;

(xii)
∥∥F⊤U

∥∥
2
= OP

(√
Tp
)
;

(xiii)
∥∥E⊤U

∥∥
2
= OP

(√
Tp
)
;

(xiv)
∥∥F⊤UB

∥∥2
2
= OP (Tp);

(xv)
∥∥E⊤UB

∥∥2
2
= OP (Tp).

Proof. In this proof, we will often apply Lemmas D.15, D.16 and D.17 to some specific

processes. Following the arguments of the proof of Lemma D.1, it can be checked that the

conditions of these Lemmas hold for these processes under the assumptions of Theorem 1.
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Proof of (i). We apply Lemmas D.15 and D.17 to Zt =
(
u2
tj − E

[
u2
tj

])p
j=1

and get

max
j∈[p]

∣∣∣∣∣ 1T
T∑
t=1

u2
tj − E

[
u2
tj

]∣∣∣∣∣ = OP

(
p

2
q

√
T

)
. (OA.39)

By the triangle inequality, we obtain

max
j∈[p]

∣∣∣∣∣
T∑
t=1

u2
tj

∣∣∣∣∣ ≤ T max
j∈[p]

∣∣∣∣∣ 1T
T∑
t=1

u2
tj − E[u2

tj]

∣∣∣∣∣+ T max
j∈[p]

E
[
u2
tj

]
= OP

(
T +

√
Tp

2
q

)
= OP (T ),

where we used maxj∈[p] E[u2
tj] ≤ ∥Σ∥∞ = O(1) by Assumption 3 (ii) and the fact that

p
2
q /
√
T → 0 by Assumption 5 (i).

Proof of (ii), (iii). We apply Lemmas D.15 and D.17 to

Zt = ((utjftk)
p
j=1)

K
k=1;

Zt = (utjεt)
p
j=1,

and obtain (ii), (iii).

Proof of (iv). We apply Lemmas D.15 and D.17 to

Zt =

(utj

(
p−1/2

p∑
ℓ=1

utℓbℓk

)
− E

[
utj

(
p−1/2

p∑
ℓ=1

utℓbℓk

)])p

j=1

K

k=1

,

and obtain

max
j∈[p],k∈[K]

∣∣∣∣∣
T∑
t=1

(
utj

(
p−1/2

p∑
ℓ=1

utℓbℓk

)
− E

[
utj

(
p−1/2

p∑
ℓ=1

utℓbℓk

)])∣∣∣∣∣ = OP

(
p

2
q

√
T
)
.

(OA.40)

Next, by Assumption 3 (v), we have

max
j∈[p],k∈[K]

∣∣∣∣∣
T∑
t=1

E

[
utj

(
p∑

ℓ=1

utℓbℓk

)]∣∣∣∣∣ = O(T ). (OA.41)

By the triangle inequality and equations (OA.40) and (OA.41), we obtain

max
j∈[p],k∈[K]

∣∣∣∣∣
T∑
t=1

utj

(
p∑

ℓ=1

utℓbℓk

)∣∣∣∣∣
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≤ √
p max
j∈[p],k∈[K]

∣∣∣∣∣
T∑
t=1

(
utj

(
p−1/2

p∑
ℓ=1

utℓbℓk

)
− E

[
utj

(
p−1/2

p∑
ℓ=1

utℓbℓk

)])∣∣∣∣∣
+ max

j∈[p],k∈[K]

∣∣∣∣∣
T∑
t=1

E

[
utj

(
p∑

ℓ=1

utℓbℓk

)]∣∣∣∣∣ = OP

(√
Tp

2
q
+ 1

2 + T
)
.

Proof of (v). The result directly follows from the application of Lemmas D.15 and D.17

to Zt = utu
⊤
t ε

2
t − E

[
utu

⊤
t ε

2
t

]
.

Proof of (vi). The result follows from applying Lemmas D.15 and D.17 to Zt = ε2t −E [ε2t ]

and using the triangle inequality.

Proof of (vii). To obtain this statement, we apply Lemmas D.15 and D.17 to Zt =

f 2
tk − E[f 2

tk], sum over k and use the triangle inequality, noticing that E[f 2
tk] = 1 by As-

sumption 2 (i).

Proof of (viii). Statement (viii) follows from the application of Lemmas D.15 and D.17 to

Zt = ftkftℓ−E[ftkftℓ], summing over k, ℓ and using the fact that E[ftf⊤
t ] = IK by Assump-

tion 2 (ii) from the main text.

Proof of (ix). We use the fact that E [∥U∥22] = E
[∑T

t=1

∑p
j=1 u

2
tj

]
= O(Tp) by Assumption

3 (ii) and Markov’s inequality.

Proof of (x). We apply Lemmas D.15 and D.17 to Zt = εtftk and obtain
∑T

t=1 εtftk =

OP

(√
T
)
. This yields (x), by

∥∥F⊤E
∥∥
2
=

√∑K
k=1

(∑T
t=1 εtftk

)2
= OP

(√
T
)
.

Proof of (xi), (xii) and (xiii). We apply Lemmas D.15 and D.17 to

Zt =

(
p−1/2

p∑
ℓ=1

utℓbℓk

)2

− E

(p−1/2

p∑
ℓ=1

utℓbℓk

)2


and obtain

max
k∈[K]

∣∣∣∣∣∣
T∑
t=1

(p−1/2

p∑
ℓ=1

utℓbℓk

)2

− E

(p−1/2

p∑
ℓ=1

utℓbℓk

)2
∣∣∣∣∣∣ = OP

(√
T
)
. (OA.42)
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Note that, by Assumption 3 (iii),

max
k∈[K]

E

(p−1/2

p∑
ℓ=1

utℓbℓk

)2
 = O(1). (OA.43)

Then, we obtain the result using the triangle inequality and equations (OA.67) and (OA.69):

∥UB∥22 = p
T∑
t=1

K∑
k=1

(
p−1/2

p∑
ℓ=1

utℓbℓk

)2

≤ Kpmax
k∈[K]

∣∣∣∣∣∣
T∑
t=1

(p−1/2

p∑
ℓ=1

utℓbℓk

)2

− E

(p−1/2

p∑
ℓ=1

utℓbℓk

)2
∣∣∣∣∣∣

+KTpmax
k∈[K]

E

(p−1/2

p∑
ℓ=1

utℓbℓk

)2
 = OP (Tp) .

The proofs of (xii) and (xiii) are similar and therefore omitted.

Proof of (xiv), (xv). We apply Lemmas D.15 and D.17 to

Zt = ft

(
p−1/2

p∑
ℓ=1

utℓbℓk

)
;

Zt = εt

(
p−1/2

p∑
ℓ=1

utℓbℓk

)
and obtain the result by summing over k. 2

Lemma D.10 Under the assumptions of Theorem 1, the following holds:

(i)
∥∥∥ qF − FH⊤

∥∥∥2
2
= OP

(
T
p
+ 1
)
;

(ii)
∥∥H⊤H − IK

∥∥2
2
= OP

(
1
T
+ 1

p

)
;

(iii) maxj∈[p]

∥∥∥qbj −Hbj

∥∥∥
2
= OP

(
1√
p
+ p

2
q

√
T

)
;

(iv) ∥V −1∥2 = OP

(
1
p

)
;

(v)
∥∥∥qU − U

∥∥∥
∞

= oP

(
p
2
q

T 1/2−1/q +
T 1/q
√
p

)
;

(vi) maxj∈[p]
∑T

t=1 |qutj − utj|2 = OP

(
p4/q + T

p

)
;
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Proof. The results (i) to (v) follow from Lemmas S.9 and S.11 and Theorem 2 in Fan et al.

(2023). Assumption 2 in Fan et al. (2023) is satisfied by our Assumption 3. Assumption 3

in Fan et al. (2023) corresponds to our Assumption 2.

To show (vi), note that, for all t ∈ [T ] and j ∈ [p], it holds that

qutj − utj = x⊤
tj −qb⊤j qft − utj

= b⊤j ft −qb⊤j qft

= b⊤j
(
IK −H⊤H

)
ft −

(
qbj −Hbj

)⊤
qft − b⊤j H

⊤
(
qft −Hft

)
.

This yields

max
j∈[p]

T∑
t=1

|qutj − utj|2 ≤ K∥B∥2∞
∥∥H⊤H − IK

∥∥2
2
∥F∥22

+max
j∈[p]

∥∥∥qbj −Hbj

∥∥∥2
2
T

+K∥B∥2∞∥H∥22
∥∥∥ qF − FH⊤

∥∥∥2
2
= OP

(
p4/q +

T

p

)
,

where we used (i), (ii), (iii), Lemma D.9 (vii) and Assumption 2 (iv). 2

Lemma D.11 Under the assumptions of Theorem 1, it holds that

qF − FH⊤ =
1

T
FB⊤U⊤

qFV −1 +
1

T
UBF⊤

qFV −1 +
1

T
UU⊤

qFV −1.

Proof. Recall that H = 1
T
V −1

qF⊤FB⊤B and qFV = 1
T
XX⊤

qF . As a result, we have

qFV = T−1XX⊤
qF

=
1

T
(FB⊤ + U)(FB⊤ + U)⊤ qF

=
1

T
FB⊤BF⊤

qF +
1

T
FB⊤U⊤

qF +
1

T
UBF⊤

qF + T−1UU⊤
qF .

Multiplying both sides by V −1, we get the result. 2

Lemma D.12 Under the assumptions of Theorem 1, we have∥∥∥∥( qF − FH⊤
)⊤

E
∥∥∥∥
2

= OP

(√
T

p
+ 1

)
.
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Proof. By Lemma D.11, we have∥∥∥( qF − FH⊤)⊤E
∥∥∥
2
≤ J1 + J2 + J3, (OA.44)

where

J1 =
1

T

∥∥∥E⊤FB⊤U⊤
qFV −1

∥∥∥
2
;

J2 =
1

T

∥∥∥E⊤UBF⊤
qFV −1

∥∥∥
2
;

J3 =
1

T

∥∥∥E⊤UU⊤
qFV −1

∥∥∥
2
.

We have

J1 ≤
1

T

∥∥E⊤F
∥∥
2

(
∥UB∥2

∥∥∥ qF − FH⊤
∥∥∥
2
+ ∥H∥2

∥∥B⊤U⊤F
∥∥
2

)
∥V −1∥2

= OP

(
1

T

√
T

(√
Tp

√
T

p
+ 1 +

√
Tp

)
1

p

)
= OP

(√
T

p
+

1
√
p

)
, (OA.45)

by Lemmas D.10 (i), (ii), (iv) and D.9 (x), (xi), (xiv). Moreover, it holds that

J2 ≤
1

T
∥E⊤UB∥2 ∥F∥2

∥∥∥ qF∥∥∥
2
∥V −1∥2

= OP

(
1

T

√
T
√
Tp

√
T
1

p

)
= OP

(√
T

p

)
, (OA.46)

by Lemmas D.10 (iv) and D.9 (vii), (xv) and the fact that
∥∥∥ qF∥∥∥

2
=

√
KT . We also have

J3 ≤
1

T

∥∥E⊤U
∥∥
2

(
∥U∥2

∥∥∥ qF − FH⊤
∥∥∥
2
+
∥∥U⊤F

∥∥
2

)
∥V −1∥2

= OP

(
1

T

√
Tp

(√
Tp

√
T

p
+ 1 +

√
Tp

)
1

p

)

= OP

(√
T

p
+

1
√
p
+ 1

)
, (OA.47)

where we used Lemmas D.10 (i), (iv) and D.9 (ix), (xii), (xiii). We obtain the result by

(OA.44), (OA.45), (OA.46) and (OA.47). 2

Lemma D.13 Under the assumptions of Theorem 1, we have

max
j∈[p]

T∑
t=1

(
qutj ε̃t + f̃⊤

t φ
∗ − utjεt

)2
= OP

((
p

4
qT

2
q +

T
2
q
+1

p

)
+

(
1 +

T

p

)
∥φ∗∥22

)
.
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Proof. First, notice that, by the triangle inequality,√√√√ T∑
t=1

(
qutj ε̃t + f̃⊤

t φ
∗ − utjεt

)2

=

√√√√ T∑
t=1

(
qutj (ε̃t − εt) + f̃⊤

t φ
∗ + (qutj − utj) εt

)2

≤

√√√√ T∑
t=1

(qutj (ε̃t − εt))
2 +

√√√√ T∑
t=1

(
f̃⊤
t φ

∗
)2

+

√√√√ T∑
t=1

((qutj − utj) εt)
2. (OA.48)

We first bound the term
∑T

t=1 (qutj (ε̃t − εt))
2. Remark that

T∑
t=1

(qutj (ε̃t − εt))
2 ≤

∥∥∥qU∥∥∥2
∞

∥∥∥(IT − qP
)
E − E

∥∥∥2
2
=
∥∥∥qU∥∥∥2

∞

∥∥∥ qPE
∥∥∥2
2
. (OA.49)

Now, using Lemma D.16 and the tail bound in Assumption 3 (iii), we obtain ∥U∥∞ =

OP

(
(Tp)1/q

)
. Combining this with Lemma D.10 (v) and

∥∥∥qU∥∥∥
∞

≤
∥∥∥qU − U

∥∥∥
∞
+ ∥U∥∞, we

get ∥∥∥qU∥∥∥2
∞

= OP

(
(Tp)2/q

)
. (OA.50)

Next, recall that qP = T−1
qF qF⊤E and

∥∥∥ qF∥∥∥
2
=

√
KT . This yields

∥∥∥ qPE
∥∥∥
2
≤ 1

T

∥∥∥ qF∥∥∥
2

∥∥∥∥( qF − FH⊤
)⊤

E
∥∥∥∥
2

+
1

T

∥∥∥ qF∥∥∥
2
∥H∥2

∥∥F⊤E
∥∥
2

=
1√
T
OP

(√
T

p
+ 1

)
= OP

(
1√
T

+
1
√
p

)
, (OA.51)

by Lemmas D.10 (ii), D.9 (x) and D.12. Thanks to (OA.49), (OA.50) and (OA.51), we

obtain
T∑
t=1

(qutj (ε̃t − εt))
2 = OP

(
(Tp)

2
q

(
1

T
+

1

p

))
. (OA.52)

Let us now bound the term
∑T

t=1

(
f̃⊤
t φ

∗
)2
. We have

T∑
t=1

(
f̃⊤
t φ

∗
)2

=
∥∥∥(IT − qP

)
Fφ∗

∥∥∥2
2
≤
∥∥∥(IT − qP

)
F
∥∥∥2
2
∥φ∗∥22 . (OA.53)

Next, notice that∥∥∥(IT − qP
)
F
∥∥∥
2
=

∥∥∥∥(IT − 1

T
qF qF⊤

)
F

∥∥∥∥
2
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≤
∥∥∥∥ 1T ( qF − FH⊤

) (
FH⊤)⊤ F

∥∥∥∥
2

+

∥∥∥∥ 1T FH⊤
(
qF − FH⊤

)⊤
F

∥∥∥∥
2

+

∥∥∥∥(IT − 1

T
FH⊤ (FH⊤)⊤)F

∥∥∥∥
2

. (OA.54)

Then, notice that∥∥∥∥ 1T ( qF − FH⊤
) (

FH⊤)⊤ F

∥∥∥∥
2

+

∥∥∥∥ 1T FH⊤
(
qF − FH⊤

)⊤
F

∥∥∥∥
2

≤ 2

T

∥∥∥ qF − FH⊤
∥∥∥
2
∥F∥22 ∥H∥2 = OP

(√
T

p
+ 1

)
, (OA.55)

by Lemmas D.10 (i), (ii) and D.9 (vii). Moreover, we have∥∥∥∥(IT − 1

T
FH⊤ (FH⊤)⊤)F

∥∥∥∥
2

≤
∥∥∥∥(IT − 1

T
FF⊤

)
F

∥∥∥∥
2

+

∥∥∥∥ 1T F
(
H⊤H − IK

)
F⊤F

∥∥∥∥
2

≤ ∥F∥2

∥∥∥∥IK − 1

T
F⊤F

∥∥∥∥
2

+
1

T
∥F∥2

∥∥H⊤H − IK
∥∥
2
∥F∥22 = OP

(
1 +

√
T

p

)
, (OA.56)

by Lemmas D.9 (vii), (viii) and D.10 (ii). Combining (OA.53), (OA.54), (OA.55) and

(OA.56), we get
T∑
t=1

(
f̃⊤
t φ

∗
)2

= OP

(
1 +

T

p

)
∥φ∗∥22 . (OA.57)

Finally, we bound
∑T

t=1 ((qutj − utj) εt)
2. Notice that

max
j∈[p]

T∑
t=1

((qutj − utj)εt)
2 ≤ ∥E∥2∞ max

j∈[p]

T∑
t=1

(qutj − utj)
2 (OA.58)

Next, using Lemma D.16 and the tail bound in Assumption 3 (iii), we have ∥E∥2∞ =

OP

(
T

2
q

)
. This, Lemma D.10 (vi) and equation (OA.58) yield that

max
j∈[p]

T∑
t=1

((qutj − utj) εt)
2 = OP

(
T

2
q p

4
q +

T 1+ 2
q

p

)
. (OA.59)

Combining (OA.48), (OA.52), (OA.57) and (OA.59), we obtain the result. 2

Lemma D.14 Under the assumptions of Theorem 1, we have∥∥∥qU⊤
(
qY − qUβ∗

)
− U⊤E

∥∥∥
∞

= (∥φ∗∥2 ∨ 1)OP

(
T

p
+ p

2
q +

√
Tp

2
q
− 1

2

)
.
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Proof. In all this proof, we work on the event Eσ = {σp

(
H⊤H

)
≥ 1/2} which has

probability going to 1 by Lemma D.10 (ii). Note that, on Eσ, we have∥∥∥(H⊤)−1
∥∥∥
2
≤

√
K
∥∥∥(H⊤)−1

∥∥∥
op

≤
√
Kσp

(
H⊤H

)−1/2 ≤
√
2K. (OA.60)

Recall that qY =
(
IT − qP

)
(Xβ∗ + Fφ∗ + E). This yields∥∥∥qU⊤

(
qY − qUβ∗

)
− U⊤E

∥∥∥
∞

≤
∥∥∥qU⊤(Fφ∗ + E)− U⊤E

∥∥∥
∞

≤
∥∥∥qU⊤Fφ∗

∥∥∥
∞
+

∥∥∥∥(qU − U
)⊤

E
∥∥∥∥
∞
.

(OA.61)

Let us first bound
∥∥∥qU⊤Fφ∗

∥∥∥
∞
. Since qU⊤

qF = 0 and H⊤ is invertible on the event Eσ, it

holds that∥∥∥qU⊤Fφ∗
∥∥∥
∞

≤
∥∥∥∥(qU − U

)⊤ (
FH⊤ − qF

) (
H⊤)−1

φ∗
∥∥∥∥
∞
+
∥∥∥U⊤

(
FH⊤ − qF

) (
H⊤)−1

φ∗
∥∥∥
∞
.

(OA.62)

We now bound the first term on the right-hand side of (OA.62). By the inequality of

Cauchy-Schwartz, we have∥∥∥∥(qU − U
)⊤ (

FH⊤ − qF
) (

H⊤)−1
φ

∥∥∥∥
∞

= max
j∈[p]

∣∣∣∣∣
((

qU − U
)⊤ (

FH⊤ − qF
) (

H⊤)−1
φ∗
)

j

∣∣∣∣∣
≤

(
max
j∈[p]

T∑
t=1

|qutj − utj|2
)1/2 ∥∥∥ qF − FH⊤

∥∥∥
2

∥∥∥(H⊤)−1
∥∥∥
2
∥φ∗∥2

= ∥φ∗∥2OP

(√
p

4
q +

T

p

√
T

p
+ 1

)
= ∥φ∗∥2OP

(
T

p
+ p

2
q + p

2
q
− 1

2

√
T

)
, (OA.63)

where we used Lemma D.10 (i), (ii), (vi) and equation (OA.60). Next, we control the

second term on the right-hand side of (OA.62). By Lemma D.11, it holds that

∥∥∥U⊤
(
FH⊤ − qF

) (
H⊤)−1

φ∗
∥∥∥
∞

≤ J1 + J2 + J3, (OA.64)

where

J1 =
1

T

∥∥∥U⊤FB⊤U⊤
qFV −1

(
H⊤)−1

φ∗
∥∥∥
∞
;

J2 =
1

T

∥∥∥U⊤UBF⊤
qFV −1

(
H⊤)−1

φ∗
∥∥∥
∞
;
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J3 =
1

T

∥∥∥U⊤UU⊤
qF
(
H⊤)−1

φ∗
∥∥∥
∞
.

Remark that∥∥∥B⊤U⊤
qF
∥∥∥
2
≤
∥∥B⊤U⊤∥∥

2

∥∥∥ qF − FH⊤
∥∥∥
2
+ ∥H∥2

∥∥B⊤U⊤F
∥∥
2

= OP

(√
Tp

√
T

p
+ 1 +

√
Tp

)
= OP (T +

√
Tp), (OA.65)

by Lemmas D.9 (xi), (xiv) and D.10 (i), (ii). By the inequality of Cauchy-Schwartz, this

yields

J1 =
1

T
max
j∈[p]

∣∣∣∣(U⊤FB⊤U⊤
qFV −1

(
H⊤)−1

φ∗
)
j

∣∣∣∣
=

1

T
max
j∈[p]

∣∣∣∣∣
K∑
k=1

(
T∑
t=1

utjftk

)(
B⊤U⊤

qFV −1
(
H⊤)−1

φ∗
)
k

∣∣∣∣∣
≤ 1

T

max
j∈[p]

∣∣∣∣∣∣
K∑
k=1

(
T∑
t=1

utjftk

)2
∣∣∣∣∣∣
1/2 ∥∥∥B⊤U⊤

qF
∥∥∥
2

∥∥V −1
∥∥
2

∥∥(H−1)⊤
∥∥
2
∥φ∗∥2

≤ 1

T

√
Kmax

j∈[p]

∣∣∣∣∣
T∑
t=1

utjftk

∣∣∣∣∣ ∥∥∥B⊤U⊤
qF
∥∥∥
2

∥∥V −1
∥∥
2

∥∥(H−1)⊤
∥∥
2
∥φ∗∥2

= OP

(
1

Tp

(
T +

√
Tp
)√

Tp
2
q

)
∥φ∗∥2 = OP

(√
Tp

2
q
−1 + p

2
q
− 1

2

)
∥φ∗∥2, (OA.66)

where we used Lemmas D.9 (ii) and D.10 (ii), (iv) and equations (OA.65) and (OA.60).

Then, notice that, by Lemma D.10 (i) and (ii), we have∥∥∥F⊤
qF
∥∥∥
2
≤ ∥F∥2

∥∥∥ qF − FH⊤
∥∥∥
2
+ ∥F∥22∥H∥2 = OP (T ). (OA.67)

This allows to bound J2. Indeed, by the inequality of Cauchy-Schwartz, it holds that

J2 =
1

T
max
j∈[p]

∣∣∣∣(U⊤UBF⊤
qFV −1

(
H⊤)−1

φ∗
)
j

∣∣∣∣
=

1

T
max
j∈[p]

∣∣∣∣∣
K∑
k=1

T∑
t=1

utj

(
p∑

ℓ=1

utℓbℓk

)(
F⊤

qFV −1
(
H⊤)−1

φ∗
)
k

∣∣∣∣∣
≤ 1

T
max
j∈[p]

√√√√ K∑
k=1

(
T∑
t=1

utj

(
p∑

ℓ=1

utℓbℓk

))2 ∥∥∥F⊤
qFV −1

(
H⊤)−1

φ∗
∥∥∥
2

≤ 1

T

√
K max

j∈[p],k∈[K]

∣∣∣∣∣
T∑
t=1

utj

(
p∑

ℓ=1

utℓbℓk

)∣∣∣∣∣ ∥∥∥F⊤
qF
∥∥∥
2

∥∥V −1
∥∥
2

∥∥(H−1)⊤
∥∥
2
∥φ∗∥2
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= OP

(
1

Tp
T
(
T + p

2
q
+ 1

2

√
T
))

∥φ∗∥2 = OP

(
T

p
+
√
Tp

2
q
− 1

2

)
∥φ∗∥2, (OA.68)

by Lemmas D.9 (iv), (vii) and D.10 (ii), (iv) and equations (OA.60) and (OA.67). Finally

note that ∥∥∥U⊤
qF
∥∥∥
2
≤
∥∥U⊤F

∥∥
2

∥∥H⊤∥∥
2
+ ∥U∥2

∥∥∥ qF − FH⊤
∥∥∥
2

= OP

(
√
T +

√
T

√
T

p
+ 1

)
= OP

(√
T +

T
√
p

)
, (OA.69)

by Lemmas D.10 (i), (ii) and D.9 (ix), (xii). Thanks to this, we can bound J3. Indeed, by

the inequality of Cauchy-Schwartz, we have

J3 =
1

T
max
j∈[p]

∣∣∣∣(U⊤UU⊤
qF
(
H⊤)−1

φ∗
)
j

∣∣∣∣
=

1

T
max
j∈[p]

∣∣∣∣∣
p∑

ℓ=1

(
T∑
t=1

utjutℓ

)(
U⊤

qF
(
H⊤)−1

φ∗
)
ℓ

∣∣∣∣∣
≤ 1

T
max
j∈[p]

√√√√ p∑
ℓ=1

(
T∑
t=1

utjutℓ

)2 ∥∥∥U⊤
qF
∥∥∥
2

∥∥V −1
∥∥
2

∥∥(H−1)⊤
∥∥
2
∥φ∗∥2 (OA.70)

≤ 1

T

√
pmax

j∈[p]

∣∣∣∣∣
T∑
t=1

u2
tj

∣∣∣∣∣ ∥∥∥U⊤
qF
∥∥∥
2

∥∥V −1
∥∥
2

∥∥(H−1)⊤
∥∥
2
∥φ∗∥2

= OP

(
1

Tp
T
√
p

(√
T +

T
√
p

))
∥φ∗∥2 = OP

(√
T

p
+

T

p

)
∥φ∗∥2, (OA.71)

where we used Lemmas D.9 (i) and D.10 (iv) and equations (OA.60) and (OA.69). Then,

(OA.62), (OA.63), (OA.64), (OA.66), (OA.68), (OA.71) imply that∥∥∥qU⊤Fφ∗
∥∥∥
∞

= OP

(
T

p
+ p

2
q +

√
Tp

2
q
− 1

2

)
∥φ∗∥2. (OA.72)

Let us now bound the second term on the right-hand side of (OA.61), that is

∥∥∥∥(qU − U
)⊤

E
∥∥∥∥
∞
.

Note that

qU⊤ − U⊤ = X⊤ − qB qF⊤ − U⊤

= BF⊤ − qB qF⊤

= B
(
IK −H⊤H

)
F⊤ −

(
qB −BH⊤

)
qF⊤ −BH⊤

(
qF − FH

)⊤
.

This yields ∥∥∥∥(qU − U
)⊤

E
∥∥∥∥
∞

≤ K1 +K2 +K3, (OA.73)
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where

K1 =
∥∥B (IK −H⊤H

)
F⊤E

∥∥
∞ ;

K2 =
∥∥∥( qB −BH⊤

)
qF⊤E

∥∥∥
∞
;

K3 =

∥∥∥∥BH⊤
(
qF − FH

)⊤
E
∥∥∥∥
∞
.

By the inequality of Cauchy-Schwartz, Lemmas D.9 (x) and D.10 (ii) and Assumption 2

(iv), it holds that

K1 = max
j∈[p]

∣∣∣∣∣
K∑
k=1

bjk
((
IK −H⊤H

)
F⊤E

)
k

∣∣∣∣∣
≤

√
K∥B∥∞

∥∥IK −H⊤H
∥∥
2

∥∥F⊤E
∥∥
2

= OP

(√
1

T
+

1

p

√
T

)
= OP

(
1 +

√
T

p

)
. (OA.74)

Next, we have

K2 = max
j∈[p]

∣∣∣∣∣
K∑
k=1

(
qbj −Hbj

)
k

(
qF⊤E

)
k

∣∣∣∣∣
≤ max

j∈[p]

∥∥∥qbj −Hbj

∥∥∥
2

∥∥∥ qF⊤E
∥∥∥
2

≤ max
j∈[p]

∥∥∥qbj −Hbj

∥∥∥
2

(∥∥∥∥( qF − FH⊤
)⊤

E
∥∥∥∥
2

+ ∥H∥2
∥∥F⊤E

∥∥
2

)
= OP

((
1
√
p
+

p
2
q

√
T

)(
√
T +

√
T

p

))

= OP

(√
T

p
+ p

2
q

)
. (OA.75)

where we used the inequality of Cauchy-Schwarz, Lemmas D.9 (x), D.10 (ii), (iii), and D.12.

Finally, by the inequality of Cauchy-Schwartz, Lemmas D.9 (ii) and D.12 and Assumption

2 (iv), it holds that

K3 = max
j∈[p]

∣∣∣∣∣
K∑
k=1

bjk

(
H⊤

(
qF − FH

)⊤
E
)

k

∣∣∣∣∣
≤

√
K ∥B∥∞

∥∥∥∥( qF − FH⊤
)⊤

E
∥∥∥∥
2

∥H∥2

= OP

(√
T

p
+ 1

)
. (OA.76)
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Combining (OA.73), (OA.74), (OA.75) and (OA.76) yields

1

T

∥∥∥∥(qU − U
)⊤

E
∥∥∥∥
∞

= OP

(√
T

p
+ p

2
q

)
. (OA.77)

We obtain the result of the lemma by (OA.61), (OA.72) and (OA.77). 2

D.7 Pre-existing results on strong mixing sequences and high-

dimensional Gaussian vectors

In this section, we state some useful lemmas and reformulate some results of Fan et al.

(2023) and Lederer & Vogt (2021) that we use to prove Theorem 1.

D.7.1 Results on variables with polynomial tails

The following result is a direct consequence of the inequality of Cauchy-Schwarz. This

lemma allows to show that products of variables in utj, ftk, εt, p
−1/2

∑p
j=1 bjutj have poly-

nomial tails.

Lemma D.15 Let Z1 and Z2 be random variables such that |||Z1|||q ≤ C and |||Z2|||q ≤ C,

for some constants C, q > 0. Then, we have |||Z1Z2|||q/2 ≤ C2.

The next lemma serves to bound the sup norm of some variables.

Lemma D.16 Let Z be a mean-zero p-dimensional random vector. Assume that there exist

constants C, h > 0 such that we have |||Z|||h ≤ C. Then, it holds that ∥Z∥∞ = OP

(
p1/h

)
.

Proof. For all j ∈ [p] and z > 0, we have P(|Zj| ≤ z) = P(|Zj|h ≤ zh) ≤ E[|Zj|h]/zh by

Markov’s inequality. By the union bound, we obtain P(|Z|∞ ≥ z) ≤ pmaxj∈[p] P(|Zj|∞ ≥

z) ≤ p
(
E[|Zj|h]/zh

)
. Taking z ∝ p1/h we obtain the result. 2

D.7.2 Results on strong mixing sequences

The next Lemma is a direct consequence of Lemma S.4 and Remark 4 in Fan et al. (2023).
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Lemma D.17 Let ST =
∑T

t=1 Zt, where {Zt}t is a sequence of mean-zero p-dimensional

random vectors such that

(i) There exist constants C1, ξ > 0 and h ≥ 2 such that, for all t ∈ [T ], we have

|||Zt|||h+ξ ≤ C1;

(ii) Theres exist constants C2, c > 0 such that the strong mixing coefficients of the sequence

{Zt}t satisfy α̃(t) ≤ C2t
−c for all t ∈ Z+;

(iii) c > (h−1)(h+ξ)
ξ

.

Then, it holds that ∥ST∥∞ = OP

(
p1/h

√
T
)
.

The last result of this subsection is a direct consequence of the high-dimensional central

limit theorem for strong mixing sequences due to Theorem S.7 (a) in Fan et al. (2023).

Lemma D.18 Let ST = n−1/2
∑T

t=1 Zt, where {Zt}t is a sequence of mean-zero p-dimensional

random vectors, such that

(i) There exist C1, ξ > 0 and h ≥ 4 such that, for all t ∈ [T ], j ∈ [p] and z > 0, we have

|||Zt|||h+ξ ≤ C1;

(ii) There exist constants C2, c > 0 such that the strong mixing coefficients of the sequence

{Zt}t satisfy α̃(t) ≤ C2t
−c for all t ≥ 2;

(iii) c >
[(

h+ξ
ξ

) (
h
2
− 1
)]

∨
(

2
1− 2

h

)
and κ =

(
1
2
+ h

4(h+1)

c+ h
2(h+1)

)
< 1

2

(iv) There exists σ∗ > 0 such that σp(Σ) ≥ σ2
∗, where Σ = E

[
STS

⊤
T

]
;

Let also G ∼ N (0,Σ). Then, there exists a constant K2 > 0 such that, for all z ≥ 0, we

have

sup
z∈R+

|P (∥ST∥∞ ≤ z)− P(|G|∞ ≤ z)|

≤ K2

[ (
T κ−1/2 + T 1− c

2
(1− 2

h
)
)
log(T ) log(p) + T−1/4 log(p)3/2 log(T ) + p

2
hT

1
h
− 1

2 log(p)2 log(T )

+
(
p log(p)

3
2
h−4 log(T ) log(Tp)

) 1
h−2

T− 1
4 + T

1
2
−cκ
(
p

1
h+1

√
1 ∨ log(p)

) ]
.
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D.7.3 Results on high-dimensional Gaussian vectors

The following two lemmas are direct consequences of Lemmas A.4 and A.5 and Remark

A.8 in Lederer & Vogt (2021). (Note that the lemmas in Lederer & Vogt (2021) themselves

follow from results in Chernozhukov et al. (2013) and Chernozhukov et al. (2015).)

Lemma D.19 Let G := (G1, . . . , Gp)
⊤ be a mean zero p-dimensional Gaussian vector.

Suppose that there exist constants c3, C3 such that c3 ≤ E[G2
j ] ≤ C3 for all j ∈ [p], then,

for every z, δ > 0, we have

P (|∥G∥∞ − z| ≤ δ) ≤ Cδ
√
1 ∨ log(2p/δ),

where C > 0 depends only on c3, C3.

Lemma D.20 Let G := (G1, . . . , Gp)
⊤ and G′ := (G′

1, . . . , G
′
p)

⊤ be two mean zero p-

dimensional Gaussian vectors with respective covariance matrices ΣG and ΣG′
. Define

δ =
∥∥ΣG − ΣG′∥∥

∞. Suppose that there exist constants c3, C3 such that c3 ≤ E[G2
j ] ≤ C3 for

all j ∈ [p]. Then, there exists a constant C > 0 depending only on c3, C3 such that

sup
z∈R

|P (∥G∥∞ ≤ z)− P (∥G′∥∞ ≤ z)| ≤ Cδ1/3(1 ∨ 2 log(2p) ∨ log(1/δ))1/3(log(2p))1/3.

D.8 On the rate condition in statement (ii) of Theorem 1.

D.8.1 Discussion

The power analysis in Theorem 1 contains the rate conditon√
log(T ∨ p)

T ∧ p
= oP

(
1

T

∥∥U⊤Uβ∗∥∥
∞

)
, (OA.78)

which we analyze in this subsection. First, we state the following Lemma, which contains

sufficient conditions in terms of nonrandom quantities for (OA.78) to hold (concerning (i))

and not hold (concerning (ii)).

Lemma D.21 Let the assumptions of Theorem 1 hold. We have

(i) If
√

log(T∨p)
T∧p + p

4
q

√
T
∥β∗∥1 = o (∥Σβ∗∥∞), then (OA.78) holds.

(ii) If ∥Σβ∗∥∞ + p
4
q

√
T
∥β∗∥1 = o

(√
log(T∨p)

T∧p

)
, then (OA.78) does not hold.
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Lemma D.21 is proved in Section D.8.2. This allows us to give examples of sequences of

β∗ and Σ such that (OA.78) holds or does not hold under our assumptions.

Example where (OA.78) holds. Let β∗ = (b, 0, . . . , 0) and Σ11 ≥ σ, where b ̸= 0 and

σ > 0 are constants that do not depend on T . Assume also that p = o(T
q
8 ). Then, we have

∥Σβ∗∥∞ ≥ Σ11|b| ≥ σ|b| and, therefore, by the fact that p = o(T
q
8 ), we obtain√

log(T ∨ p)

T ∧ p
+

p
4
q

√
T
∥β∗∥1 =

√
log(T ∨ p)

T ∧ p
+

p
4
q

√
T
|b| = o(σ|b|) = o (∥Σβ∗∥∞) .

By Lemma D.21 (i), this shows that (OA.78) holds.

Example where (OA.78) does not hold. Let β∗ =

((
p
4
q

√
T

)−1
1

T∧p , 0, . . . , 0

)
and

maxj∈[p] |Σ1j| = O(1). Assume also that p = o(T
q
8 ). Then, we have

∥Σβ∗∥∞ ≤
(
max
j∈[p]

|Σ1j|
)(

p
4
q

√
T

)−1
1

T ∧ p

and, therefore, we obtain

∥Σβ∗∥∞ +
p

4
q

√
T
∥β∗∥1 ≤

(
max
j∈[p]

|Σ1j|
)(

p
4
q

√
T

)−1
1

T ∧ p
+

1

T ∧ p
= o

(√
log(T ∨ p)

T ∧ p

)
.

By Lemma D.21 (ii), this shows that (OA.78) does not hold.

D.8.2 Proof of Lemma D.21

First, we apply Lemmas D.15 and D.17 to Zt =
(
(utjutk − E [utjutk])

p
j=1

)p
k=1

(it can be

shown that the conditions of these lemmas hold following the arguments of the proof of

Lemma D.1). These Lemmas yield∥∥∥∥U⊤U

T
− Σ

∥∥∥∥
∞

≤ max
j,k∈[p]

∣∣∣∣∣ 1T
T∑
t=1

utjutk − E [utjutk]

∣∣∣∣∣ = OP

(
p

4
q

√
T

)
. (OA.79)

Next, we show (i). By the triangle inequality, we have

∥Σβ∗∥∞ ≤
∥∥∥∥(U⊤U

T
− Σ

)
β∗
∥∥∥∥
∞
+

∥∥∥∥U⊤U

T
β∗
∥∥∥∥
∞
.
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By Hölder’s inequality applied to each component of the vector
(

U⊤U
T

− Σ
)
β∗, it holds

that ∥∥∥∥(U⊤U

T
− Σ

)
β∗
∥∥∥∥
∞

≤
∥∥∥∥U⊤U

T
− Σ

∥∥∥∥
∞
∥β∗∥1.

This leads to ∥∥∥∥U⊤U

T
β∗
∥∥∥∥
∞

≥ ∥Σβ∗∥∞ −
∥∥∥∥U⊤U

T
− Σ

∥∥∥∥
∞
∥β∗∥1.

Hence, by (OA.79) and since, under (i), it holds that
√

log(T∨p)
T∧p + p

4
q

√
T
∥β∗∥1 = o (∥Σβ∗∥∞),

we have √
log(T ∨ p)

T ∧ p
= o

(
∥Σβ∗∥∞ − p

4
q

√
T
∥β∗∥1

)

= oP

(
∥Σβ∗∥∞ −

∥∥∥∥U⊤U

T
− Σ

∥∥∥∥
∞
∥β∗∥1

)
= oP

(
T−1

∥∥U⊤Uβ∗∥∥
∞

)
,

which proves (i).

Finally, we show (ii). By a reasoning similar to that of the proof of (i), we have∥∥∥∥U⊤U

T
β∗
∥∥∥∥
∞

≤
∥∥∥∥(U⊤U

T
− Σ

)
β∗
∥∥∥∥
∞
+ ∥Σβ∗∥∞

≤
∥∥∥∥U⊤U

T
− Σ

∥∥∥∥
∞
∥β∗∥1 + ∥Σβ∗∥∞ .

Hence, by (OA.79) and since, under (ii), it holds that ∥Σβ∗∥∞+ p
4
q

√
T
∥β∗∥1 = o

(√
log(T∨p)

T∧p

)
,

we have ∥∥∥∥U⊤U

T
β∗
∥∥∥∥
∞

≤
∥∥∥∥U⊤U

T
− Σ

∥∥∥∥
∞
∥β∗∥1 + ∥Σβ∗∥∞

= OP

(
∥Σβ∗∥∞ +

p
4
q

√
T
∥β∗∥1

)

= oP

(√
log(T ∨ p)

T ∧ p

)
,

which proves (ii) (i.e., that (OA.78) cannot hold).
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