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Abstract

This study introduces a bootstrap test of the validity of factor regression within
a high-dimensional factor-augmented sparse regression model that integrates factor
and sparse regression techniques. The test provides a means to assess the suitabil-
ity of the classical dense factor regression model compared to a sparse plus dense
alternative augmenting factor regression with idiosyncratic shocks. Our proposed
test does not require tuning parameters, eliminates the need to estimate covariance
matrices, and offers simplicity in implementation. The validity of the test is theo-
retically established under time-series dependence. Through simulation experiments,
we demonstrate the favorable finite sample performance of our procedure. Moreover,
using the FRED-MD dataset, we apply the test and reject the adequacy of the classical
factor regression model when the dependent variable is inflation but not when it is
industrial production. These findings offer insights into selecting appropriate models
for high-dimensional datasets.

Keywords: sparse plus dense, high-dimensional inference, LASSO, factor models
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1 Introduction

In this paper, we investigate a factor-augmented sparse regression model. Our analysis

involves an observed sample of T real-valued outcomes y1, . . . , yT , and high-dimensional

regressors x1, . . . , xT ∈ Rp, which are interconnected as follows:

yt = f⊤
t γ

∗ + u⊤
t β

∗ + εt,

xt = Bft + ut, t = 1 . . . , T.
(1)

Here, εt ∈ R represents a random error, ut is a p-dimensional random vector of idiosyncratic

shocks, ft is a K-dimensional random vector of factors, and B is a p×K random matrix of

loadings. The parameters of interest are γ∗ ∈ RK and β∗ ∈ Rp and the right-hand side of (1)

is unobserved. We consider the case where the number p of regressors is large with respect to

the sample size T and sparsity conditions on the high-dimensional parameter vector β∗ are

imposed. The model formulation in equation (1) effectively merges two popular approaches

in handling high-dimensional datasets: factor regression (Stock & Watson (2002), Bai &

Ng (2006)) and sparse high-dimensional regression (Tibshirani (1996), Bickel et al. (2009)).

Such a model allows the outcome to be related to the regressors through both common

and idiosyncratic shocks and may better explain the data than factor regression or sparse

regression alone (see Fan, Lou & Yu (2023), which introduces and studies model (1)). Note

that, as in Stock & Watson (2002), Bai & Ng (2006), we could augment the model (1) with

additional regressors wt entering the first equation of (1) but not the second one. This case

is discussed in the Appendix.

We develop a test for the hypothesis:

H0 : β
∗ = 0 against H1 : β

∗ ̸= 0 is sparse, (2)

where our theory outlines the set of sparse alternatives against which our test has power.

Our test has two main applications. First, it can be seen as a mean to assess the suitability

of the classical factor regression model in comparison to factor-augmented sparse regres-

sion alternatives. It provides guidance on the choice between these two models in practical

applications. In particular, it allows to infer if forecasting can be improved by using factor-

augmented sparse regression instead of only factor regression.1 Second, our test also sheds

1A traditional approach to testing equal forecasting accuracy in nested models is to use mean-squared

2



light on the data generating process by allowing us to determine if the underlying model is

dense (as is the factor regression model) or sparse plus dense (as is the factor-augmented

sparse regression model). This determination will then tell us if the relation between the

regressors and the outcome is only driven by common shocks (factor regression) or if id-

iosyncratic shocks play a role as well (factor-augmented sparse regression). The question

of the adequacy of sparse or dense representations has recently garnered significant atten-

tion (see, e.g., Abadie & Kasy (2019), Giannone et al. (2021)). However, existing studies

mostly focus on the differences between sparse and dense models, and do not rely on for-

mal frequentist tests. In contrast, we consider hypothesis testing with a sparse plus dense

alternative.

Fan, Lou & Yu (2023) recently introduced the Factor-Adjusted deBiased Test (FabTest)

for evaluating (2). However, the FabTest exhibits several limitations. The test relies on a

desparsified LASSO estimator based on model (1). To achieve desparsification, Fan, Lou

& Yu (2023) utilized the nodewise LASSO method proposed by Zhang & Zhang (2014)

and van de Geer et al. (2014) for estimating the precision matrix of the idiosyncratic

shocks. However, this approach introduces p additional tuning parameters, in addition

to the one used in the original LASSO regression. Although the tuning parameters are

selected through cross-validation in practice, Fan, Lou & Yu (2023) did not provide a

theoretical justification for this selection procedure. Besides, inferential theory for LASSO-

type regressions is not well understood when the tuning parameter is selected by cross-

validation. Moreover, the test’s performance may deteriorate due to errors associated

with the nodewise LASSO estimates, and it incurs a heavy computational cost. Another

limitation of the FabTest is its reliance on estimating the variance of εt, which can lead to

imprecise results where variance estimation is challenging. Additionally, Fan, Lou & Yu

(2023) only established the validity of the FabTest for i.i.d. sub-Gaussian data.2

In this paper, we propose a new bootstrap test for (2) that overcomes the limitations of

the previously mentioned FabTest. Our proposed test does not require tuning parameters

error based bootstrap tests (Clark & McCracken (2001), Clark & West (2007)) Although such tests have

been shown to work under certain conditions when the factors are estimated by principal components

analysis (Gonçalves et al. (2017)) or common correlated effects (Stauskas & Westerlund (2022)), it is

unclear if they are still valid when the LASSO estimator is also used.
2See Section 2 in Fan, Lou & Yu (2023).
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or the estimation of variance or covariance matrices, making it easy to implement. We es-

tablish the validity of the test within a theoretical framework that accommodates scenarios

where the number of variables, denoted by p, can significantly exceed T , the explanatory

variables exhibit strong mixing and possess exponential tails. In simulations, our procedure

shows improvement over the FabTest and demonstrates favorable performance. Further-

more, we apply our test to regression exercises using the FRED-MD dataset (McCracken &

Ng (2016)). We reject the validity of the classical factor regression model to explain infla-

tion but do not find evidence against the suitability of factor regression when the outcome

is industrial production. In the Appendix, we explain how to adapt our test to the case

where the model includes additional regressors wt entering the first equation of (1).

This work is related to a recent literature considering testing for high-dimensional pa-

rameters. There exists several approaches, see Fan et al. (2015), Zhu & Bradic (2018),

Chernozhukov et al. (2019), Lederer & Vogt (2021), He et al. (2023) and references therein.

These procedures differ in terms of the type of alternative hypotheses they consider: sparse,

dense, or general. In the present paper, we are interested in sparse alternatives because we

want to infer either superior predictive accuracy of the factor-augmented sparse regression

or the presence of sparsity. Under dense factor-augmented regression models, the use of the

RIDGE estimator is advisable (He (2023)). In a generalization of our model, Fan, Masini

& Medeiros (2023) proposes a test for H0 similar to that of Chernozhukov et al. (2019)

against general hypotheses. Tests against general alternatives do not take advantage of

sparsity assumptions and, under sparse alternatives, they should therefore exhibit lower

power than tests relying on sparsity. This is a reason to rely on methods, such as ours,

which use sparsity. Our strategy draws inspiration from Lederer & Vogt (2021), a recent

paper that introduces a bootstrap procedure for selecting the penalty parameter of LASSO

in standard sparse linear regression. They employ this procedure to test the null hypothesis

that a specific high-dimensional parameter is equal to zero. We adapt their approach to

the case with unobserved factors, which poses a challenge beyond the scope of the results in

Lederer & Vogt (2021). In our case, the unobserved factors need to be estimated, indicating

that they act as generated regressors.3

3Note that, again adapting Lederer & Vogt (2021), we could also devise a procedure to select the penalty

parameter of LASSO-type estimators of model (1). We have experimented with such a procedure in Monte
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Finally, we would like to note that this paper contributes to various other strands of

literature. First, it complements papers that combine factor models and sparse regres-

sion (Hansen & Liao (2019), Fan, Lou & Yu (2023), Fan, Masini & Medeiros (2023), Vogt

et al. (2022), Beyhum & Striaukas (2023) among others). The proposed strategy allows

testing for the joint significance of the coefficients of the idiosyncratic shocks within this

framework. Second, our work is related to the literature on inference on parameters of

additional low-dimensional regressors in the factor regression model of Stock & Watson

(2002), see Bai & Ng (2006), Gonçalves & Perron (2014, 2020). Third, our work connects

with the literature on specification tests for models involving factors. Many papers test

for the validity of the assumption that loadings are time-independent in the approximate

factor model itself — the second equation in (1) — (Breitung & Eickmeier (2011), Chen

et al. (2014), Han & Inoue (2015), Yamamoto & Tanaka (2015), Su & Wang (2017, 2020),

Baltagi et al. (2021), Xu (2022), Fu et al. (2023)), while Corradi & Swanson (2014) tests

for time-independence of all coefficients in the factor regression model of Stock & Watson

(2002). Our approach complements this literature by proposing a specification test of the

factor regression model under a different alternative, namely the factor-augmented sparse

regression model.

Notation. For an integer N ∈ N, let [N ] = {1, . . . , N}. The transpose of a n1×n2 matrix

A is written A⊤. Its kth singular value is σk(A). Let us also define the Euclidean norm

∥A∥22 =
∑n1

i=1

∑n2

j=1A
2
ij and the sup-norm ∥A∥∞ = max

i∈[n1],j∈[n2]
|Aij|. The quantity n1 ∨ n2 is

the maximum of n1 and n2, n1 ∧ n2 is the minimum of n1 and n2. For N ∈ N, IN is the

identity matrix of size N ×N .

Carlo simulations and did not find that this procedure shows significant improvement over traditionally

used cross-validation. For this reason, we decided to focus the present paper on the problem of testing (2),

for which simulations yield excellent results.
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2 The test

2.1 Testing procedure

In this subsection, we explain our testing procedure, which is then summarized in algorith-

mic form in subsection 2.2. To facilitate understanding, we rewrite the model in matrix

form as follows:

Y = Fγ∗ + Uβ∗ + E ,

X = BF⊤ + U,

where Y = (y1, . . . , yT )
⊤, F = (f1, . . . , fT )

⊤ is a T × K matrix, U = (u1, . . . , uT )
⊤ and

X = (x1, . . . , xT )
⊤ are T × p matrices and E = (ε1, . . . , εT )

⊤.

It is important to note that, under the null hypothesis H0, we have U⊤(Y − Fγ∗) =

U⊤E . This observation suggests a testing procedure that involves computing an estimate

2T−1
∥∥U⊤(Y − Fγ∗)

∥∥
∞ and comparing it with the (estimated) quantiles of 2T−1

∥∥U⊤E
∥∥
∞.4

We can estimate U⊤(Y −Fγ∗) by principal components analysis. As in Fan, Lou & Yu

(2023), we let the columns of F̂ /
√
T be the eigenvectors corresponding to the leading K

eigenvalues of XX⊤ and B̂ = (F̂⊤F̂ )−1F̂⊤X = T−1F̂⊤X. When it is unknown, the number

of factors K can be estimated by one of the many methods available in the literature

(see for instance Bai & Ng (2002), Onatski (2010), Ahn & Horenstein (2013), Bai & Ng

(2019), Fan et al. (2022)). Then, we project the data on the orthogonal of the vector space

generated by the estimated factors. Let P̂ = T−1F̂
(
F̂⊤F̂ /T

)−1

F̂⊤ = T−1F̂ F̂⊤ be the

projector on the vector space generated by the columns of F̂ . A natural estimate for U

is Û = X − F̂ B̂⊤ =
(
IT − P̂

)
X. Similarly, we let Ỹ =

(
IT − P̂

)
Y be an estimate of

Y − Fγ∗. The final estimate of 2T−1
∥∥U⊤(Y − Fγ∗)

∥∥
∞ is our test statistic

2T−1
∥∥∥Û⊤Ỹ

∥∥∥
∞
. (3)

Next, to estimate the quantiles of the distribution of 2T−1
∥∥U⊤E

∥∥
∞ , we need an esti-

4We have a factor 2 in front of T−1
∥∥U⊤(Y − Fγ∗)

∥∥
∞ and T−1

∥∥U⊤E
∥∥
∞ because 2T−1

∥∥U⊤E
∥∥
∞ is

the effective noise of the problem, a natural concept in the literature on the LASSO, see Lederer & Vogt

(2021).
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mate of E . We obtain it through the following LASSO estimator:

β̂λ = argmin
β∈Rp

1

T

∥∥∥Ỹ − Ûβ
∥∥∥2
2
+ λ∥β∥1, (4)

where λ > 0 is a penalty parameter, the choice of which will be fully data driven in both

theory and practice, making our test tuning-free. For t ∈ [T ], we denote by ỹt the tth

element of Ỹ and ût as the T × 1 vector corresponding to the tth row of Û . For a given

λ > 0, let ε̂λ,t = ỹt − û⊤
t β

∗, t ∈ [T ] be the estimate of εt. For a fixed α ∈ (0, 1), we can

then estimate qα, the (1−α) quantile of the distribution of 2T−1∥U⊤E∥∞, by the Gaussian

multiplier bootstrap. Let e = (e1, . . . , eT ) be a standard normal random vector independent

of the data (X, Y ) and define the criterion

Q̂(λ, e) =

∥∥∥∥∥ 2T
T∑
t=1

ûtε̂λ,tet,

∥∥∥∥∥
∞

.

The estimate q̂α(λ) of qα is then the (1−α)-quantile of the distribution of Q̂(λ, e) given X

and Y . Formally, q̂α(λ) = inf
{
q : Pe(Q̂(λ, e) ≤ q) ≥ 1− α

}
, where Pe(·) = P(·|X, Y ).

The only remaining element to make the test tuning-free is the procedure to select λ.

We adapt the approach of Lederer & Vogt (2021) to our setting. Our choice of λ is

λ̂α = inf{λ > 0 : q̂α(λ
′) ≤ λ′ for all λ′ ≥ λ}. (5)

We explain in Section 2.2 how to compute λ̂α in practice. The infimum in (5) exists

because for all λ ≥ λ̄ = 2T−1
∥∥∥Û⊤Ỹ

∥∥∥
∞
, it holds that β̂λ = β̂λ̄ = 0. Moreover, since Û β̂λ

is a continuous function of λ, q̂α(λ) is also continuous in λ and the infimum is attained

at a point λ̂α > 0 such that qα

(
λ̂α

)
= λ̂α. Let us recall briefly the heuristics behind the

choice of λ and refer the reader to Lederer & Vogt (2021) for more details. First, note that

when λ is close to qα, standard convergence bounds for the LASSO suggest that β̂λ is a

precise estimate of β∗, so that ε̂λ,t is a good estimate of εt and, in turn, q̂α(λ) is close to

qα. Second, when λ becomes (much) larger than qα, the error ε̂λ,t − εt becomes large and

dependent of ût, which in turn increases q̂α(λ) and leads it to be larger than qα. We then

let our estimator of qα be λ̂α = q̂α

(
λ̂α

)
.

The test rejects H0 at the level α when our test statistic given in (3) is larger than the

estimate λ̂α of qα. Therefore, our testing procedure is free of tuning parameters stemming

from the LASSO regression in equation (4).
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2.2 Computation

Algorithm 1 below explains how to conduct the test in practice. Let us discuss Step 4 of

Algorithm 1 in detail. It approximates λ̂α as defined in (5). It is advisable to set the grid

size M and the number of bootstrap samples L to be as large as possible. As mentioned

in Lederer & Vogt (2021), one can speed up Step 4.2 by computing the LASSO with a

warm start along the penalty parameter path. Furthermore, Step 4.3 can be accelerated

through parallelization techniques. In our implementation, we use both suggestions which

greatly speeds up the computations. We also note that to compute the p-value of the test,

it suffices to conduct it on a grid of values of α and let the p-value be equal to the largest

value of α in this grid such that the test of level α rejects H0.

1. Estimate K̂ by one of the available estimators of the number of factors.

2. Let the columns of F̂ /
√
T be the eigenvectors corresponding to the leading K̂ eigen-

values of XX⊤.

3. Compute Û =
(
IT − P̂

)
X and Ỹ =

(
IT − P̂

)
Y , where P̂ = T−1F̂ F̂⊤.

4. Calculate an approximation λ̂α,emp of λ̂α as follows:

4a. Specify a grid 0 < λ1 < · · · < λM < λ̄, with λ̄ = 2T−1
∥∥∥Û⊤Ỹ

∥∥∥
∞
.

4b. For m ∈ [M ] compute
{
Q̂
(
λm, e

(ℓ)
)
: ℓ ∈ [L]

}
for L draws of e ∼ N (0, IT ) and

the corresponding empirical (1− α)-quantile q̂α,emp(λm) from them.

4c. Let λ̂α,emp = q̂α,emp(λm̂), with m̂ = min{m ∈ [M ] : q̂α,emp(λm′) ≤ λm′ for all m′ ≥

m}.

5. Reject H0 when 2T−1
∥∥∥Û⊤Ỹ

∥∥∥
∞

> λ̂α,emp.

Algorithm 1: Conducting a test of level α ∈ (0, 1).

3 Asymptotic theory

In this section, we provide the asymptotic properties of the test in a theoretical framework

allowing for time series dependence in the factors and the idiosyncratic shocks and expo-

nential tails. We place ourselves in an asymptotic regime where T goes to infinity and p
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goes to infinity as a function of T . The number of factors K is fixed with T . It would

be possible to let it grow, see, for instance, Beyhum & Gautier (2023). For our theory,

as is standard in the literature, we assume that K is known, so that K̂ = K. However,

our results would remain valid when one uses an estimator K̂ which is equal to K with

probability going to 1 as T → ∞. The distributions of the factors ft and the error terms

εt do not depend on T , while the distribution of the other variables are allowed to vary

with T . All the constants we introduce are universal in the sense that they do not vary

with the sample size. Our assumptions are significantly weaker than that of Fan, Lou &

Yu (2023). We impose the usual identifiability condition for factor models (Bai (2003), Fan

et al. (2013)):

cov(ft) = IK and B⊤B is diagonal. (6)

We introduce further notation. The loading bjk corresponds to the jth element of the

kth column of B. Let also bj = (bj1, . . . , bjk)
⊤. We first state four assumptions similar to

the usual ones found in the factor models literature (see e.g. Bai & Ng (2006), Fan et al.

(2013)).

Assumption 1 All the eigenvalues of the K ×K matrix p−1B⊤B are bounded away from

0 and ∞ as p → ∞.

Assumption 2 The following holds:

(i) {ut, ft, εt,
∑p

ℓ=1 utℓbℓ}t is strictly stationary. Moreover, it holds that

E[utj] = E[ftk] = E[utjftk] = E

[
ftk

(
p∑

ℓ=1

utℓbℓh

)]
= 0,

for all t ∈ [T ], j ∈ [p], k, h ∈ [K].

(ii) Let Σ = E[utu
⊤
t ]. There exist κ1, κ2 > 0 such that σp(Σ) > κ1, σp(E

[
ε2tutu

⊤
t

]
) > κ1,∣∣E [ε2tutu

⊤
t

]∣∣
∞ < κ2, maxj∈[p]

∑p
ℓ=1 |Σjℓ| < κ2 and minj,ℓ∈[p] (E [(utjutℓ)

2]− E[utjutk]
2) >

κ1.
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(iii) There exist K1, θ1 > 0 such that for any z > 0, t ∈ [T ], j ∈ [p] and k ∈ [K], we have

P (|utj| > z) ≤ exp

(
−
(

z

K1

)θ1
)
;

P (|ftk| > z) ≤ exp

(
−
(

z

K1

)θ1
)
;

P

(
1
√
p

∣∣∣∣∣
p∑

j=1

bjkutj

∣∣∣∣∣ > z

)
≤ exp

(
−
(

z

K1

)θ1
)
;

P (|εt| > z) ≤ exp

(
−
(

z

K1

)θ1
)
.

(iv) {utεt}t is uncorrelated across t, and, for all t ∈ [T ], j ∈ [p], k ∈ [K],

E[utjεt] = E[ftkεt] = E

[
εt

p∑
ℓ=1

utℓbℓk

]
= 0.

Assumption 3 Let α denote the strong mixing coefficients of {ft, ut, εt,
∑p

ℓ=1 utℓbℓ}t. There

exists θ2 > 0 such that 2θ−1
1 + θ−1

2 > 1 and K2 > 0 such that for all T ∈ Z+, we have

α(T ) ≤ exp
(
−K2T

θ2
)
.

Assumption 4 There exists M > 0 such that for all s, t ∈ [T ], we have

(i) ∥B∥∞ < M a.s.;

(ii) E
[
p−1/2

(
u⊤
s ut − E

[
u⊤
s ut

])]4
< M ;

(iii) maxj∈[p],k∈[K]

∣∣∣T−1
∑T

t=1 E [utj (
∑p

ℓ=1 utℓbℓk)]
∣∣∣ < M.

Assumption 1 combined with the identifiability condition (6) constitutes a strong factor

assumption (Bai (2003)). Assumption 2 restricts the moments and the tail behavior of the

variables. Assumption 2 (i),(ii),(iv) contains conditions on the moments of the different

variables similar to that of the literature (Bai & Ng (2006), Fan et al. (2013)). We assume

that the variables in Assumption 2 (iii) have exponential tails with common parameter θ1.

It would be possible to have a different tail parameter for each variable or to allow for

polynomial tails, but we avoid doing so to simplify our presentation. In the similar context

of inference on factor regression models, Assumption E.2. in Bai & Ng (2006) and Assump-

tion 7 in Gonçalves & Perron (2014) impose conditions analogous to the restriction that
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{utεt}t is uncorrelated across t in Assumption 2 (iv). A sufficient condition for the latter

restriction is that {εt}t is uncorrelated across t and independent of {ut}t . Note that this

assumption could be avoided by using a block bootstrap method, but this would complicate

the test and may not be justified in a setting where the factors might capture most of the

serial correlation. Assumption 3 means that {ft, ut, εt,
∑p

ℓ=1 utℓbℓh}t are strongly mixing,

which is a restriction on the time-series dependence of the variables. Next, Assumption 4

(i),(ii) is found in Fan et al. (2013) and contains a boundedness condition (i) and a moment

condition (ii) on both the time-series and the cross-section dependence of the idiosyncratic

shocks. Finally, Assumption 4 (iii) is a restriction on the cross-section correlation of the

idiosyncratic shocks. This condition holds, for instance, if {ut}t and {bℓ}ℓ are independent

and maxj∈[p]
∑p

ℓ=1 |Σjℓ| = O(1) (which is imposed in Assumption 2 (iii)).

Let us introduce θ−1 = 2θ−1
1 + θ−1

2 , τ = 12 + 4θ2 +
4
θ
+ 4

θ2
and φ∗ = γ∗ − B⊤β∗ . To

interpret φ∗, note that the first equation of (1) can be rewritten yt = f⊤
t φ

∗ + x⊤
t β

∗ + εt,

which becomes a usual high-dimensional sparse regression model when φ∗ = 0. Note φ∗

is random and, therefore, we use probabilistic notation when stating bounds on its norm.

The next assumption concerns the relative growth rate of T and p.

Assumption 5 The following holds:

(i)
√

log(T∨p)τ
T

(∥β∗∥1 ∨ 1) = o(1);

(ii) log(T ∨ p)5/2
√
T

T∧p(∥φ
∗∥2 ∨ 1) = oP (1).

Assumption 5 (i) contains sparsity restrictions on the alternative hypotheses. When ∥β∥∞ =

O(1), condition (i) corresponds, up to logarithmic factors, to the standard consistency con-

dition for the LASSO with bounded regressors and error with sub-Gaussian tails that is√
log(p)/T (s0 ∨ 1) = o(1), where s0 is the number of nonzero coefficients of β∗. Our con-

dition is slightly stronger because of the fact that the factors have to be estimated, the

variables have exponential tails and are strongly mixing. Condition (ii) is a slightly more

restrictive version of the standard condition that
√
T/(T ∧ p) = o(1) for inference in the

factor regression model.5 Indeed, since φ∗ is of size K, it is reasonable to assume that

5This condition is equivalently stated as
√
T/p = o(1) in Bai & Ng (2006), Corradi & Swanson (2014)

and many others.
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∥φ∗∥2 = OP (1). Under this condition, (ii) corresponds to
√
T/(T ∧ p) = o(1) up to loga-

rithmic factors. Additionally, it is worth noting that our proofs reveal that Assumption 5 is

stronger than necessary, and the validity of the test could be established under more com-

plex but weaker rate conditions. However, for the sake of clarity, we present Assumption 5

instead of a more intricate condition.

We have the following theorem.

Theorem 1 Let Assumptions 1, 2, 3, 4 and 5 hold. For all α ∈ (0, 1), we have

(i) If β∗ = 0, then P
(
T−1

∥∥∥Û⊤Ỹ
∥∥∥
∞

> λ̂α

)
≤ α + o(1).

(ii) If
√

log(T∨p)
T∧p = oP

(
T−1

∥∥U⊤Uβ∗
∥∥
∞

)
, then P

(
T−1

∥∥∥Û⊤Ỹ
∥∥∥
∞

> λ̂α

)
→ 1.

The proof of Theorem 1 can be found in Online Appendix B. Statement (i) means that

the empirical size of the test tends to the nominal size. Statement (ii) shows that the test

has asymptotic power equal to 1 against sequences of alternatives such that
√

log(T∨p)
T∧p =

oP
(
T−1

∥∥U⊤Uβ∗
∥∥
∞

)
. As noted in Lederer & Vogt (2021), such a condition is inevitable

because the presence of the error εt prevents us from distinguishing true Uβ∗ and εt when

Uβ∗ is too small.

4 Simulations

In this section, we provide a Monte Carlo study which sheds light on the finite sample

performance of our proposed testing procedure. We generate samples with T = 100 obser-

vations, p = 100 variables andK = 2 factors. The loadings are such that bjk ∼ U [−1, 1], j ∈

[p], k ∈ [K]. The factors are generated as ft = ρfft−1 + f̃t for t = 2, . . . , T , where f̃t are

i.i.d. N
(
0, IK

(
1− ρ2f

))
. The idiosyncratic components {ut} are such that ut = ρuut−1+ ũt

for t = 2, . . . , T , where ũt are i.i.d. N (0,Σ (1− ρ2u)), with Σij = 0.6|i−j|, i, j ∈ [p]. We also

let εt = ρeεt−1 + ε̃t for t = 2, . . . , T , where ε̃t are N (0, (1− ρ2e)).

The parameters ρf , ρu and ρe control the level of time series dependence. The stationary

distributions of ft, ut, εt are, respectively, N (0, IK), N (0,Σ) and N (0, 1). We initialize f0,

u0 and ε0 as such. We consider three dependency designs:

Design 1. ρf = ρu = ρe = 0, so that the data are i.i.d. across t.
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Design 2. ρf = 0.6, ρu = 0.1 and ρe = 0, which introduces time series dependence in

the factors and the idiosyncratric shocks.

Design 3. ρf = 0.6 and ρu = ρe = 0.1, where there is time series dependence in the

factors, the idiosyncratric shocks and the error terms.

The third design is not formally allowed in our theory but we want to show that our test

performs well even under weak serial correlation of {εt}t.

Finally, we set β∗ = (1, 0.5, . . . )⊤ × m, where m ∈ {0, 0.1, 0.2, 0.3, 0.4} controls signal

strength and γ∗ = (0.5, 0.5)⊤.

We compute the rejection probabilities of our test and the FabTest of Fan, Lou & Yu

(2023) at the levels α ∈ {0.1, 0.05, 0.01} over 2000 replications. For our test, we setM = 200

and choose an equidistant grid of values of λ. We use L = 200 bootstrap replications. The

results are insensitive to the choice of L and M as long as they are large enough. This is to

be expected since their only role is in the approximation of theoretical quantities. In our

experience, L = M = 100 yields already very precise results. The number of factors K is

estimated through the eigenvalue ratio estimator of Ahn & Horenstein (2013). The test of

Fan, Lou & Yu (2023) is implemented as in the simulations of Fan, Lou & Yu (2023).

The results are reported in Table 1. In the Online Appendix A, we present simulations

under the same data generating processes, but with larger sample size (T = 200) and

number of variables (p = 200). First, we see that both tests have an empirical size close to

the nominal levels. For both testing procedures, we see that the empirical size is closer to

the nominal levels for the dependent data case compared to the independent data case, but

the differences are small. Notably, we see a large increase in the power of our test compared

to the FabTest of Fan, Lou & Yu (2023). In both simulation designs, the power of our test

increases much faster for larger values of m, suggesting that our procedure correctly rejects

the null hypothesis even if the signal is relatively weak, while possessing similar control on

the empirical size.

Finally, note that our test has a much lower computational time than the FabTest. For

instance, on a Ryzen 9 processor, for Design 1 with m = 0 and T = p = 100, our test runs

in around 2 seconds, while the FabTest takes 36 seconds (average over 100 replications).
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Design 1: ρf = ρu = ρe = 0

Our test FabTest

m α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

0 0.0830 0.0390 0.0100 0.0800 0.0400 0.0085

0.1 0.1145 0.0515 0.0180 0.1020 0.0530 0.01350

0.2 0.3025 0.1945 0.0745 0.1515 0.0845 0.0225

0.3 0.6540 0.5375 0.3080 0.3192 0.2086 0.0800

0.4 0.9175 0.8555 0.6905 0.6740 0.5430 0.3245

Design 2: ρf = 0.6, ρu = 0.1 and ρe = 0

Our test FabTest

m α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

0 0.0875 0.0390 0.0065 0.0905 0.0410 0.0125

0.1 0.1090 0.0480 0.0140 0.1015 0.0460 0.0160

0.2 0.3075 0.2030 0.0750 0.1535 0.0805 0.0220

0.3 0.6570 0.5320 0.3145 0.3305 0.2220 0.0920

0.4 0.9195 0.8595 0.7005 0.6810 0.5580 0.3410

Design 3: ρf = 0.6 and ρu = ρe = 0.1

Our test FabTest

m α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

0 0.0935 0.0475 0.0120 0.0850 0.0425 0.0100

0.1 0.1295 0.0595 0.0160 0.1160 0.0530 0.0140

0.2 0.3200 0.2065 0.0800 0.1600 0.0875 0.0215

0.3 0.6645 0.5480 0.3215 0.3302 0.2151 0.0855

0.4 0.9190 0.8665 0.7050 0.6810 0.5555 0.3245

Table 1: Rejection probabilities with T = 100 and p = 100 for the three designs we consider.

5 Empirical application

We apply our test in two exercises where we use the FRED-MD monthly dataset of Mc-

Cracken & Ng (2016). To avoid the (potential) structural breaks of the great recession and

the COVID pandemic, we analyze the data between July 2009 (one month after the end

of the NBER recession) and February 2020 (included). The variables are transformed and

standardized as suggested in McCracken & Ng (2016). First, we consider inflation series
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where additionally to our test application, we investigate whether results found using the

full sample generalize to out-of-sample forecasting. In the second example, motivated by

a recent discussion on sparse versus dense models, see, e.g., Giannone et al. (2021), we

test whether the dense factor regression model is an appropriate model for the industrial

production variable versus the sparse plus dense alternative (factor-augmented sparse re-

gression model). In this case, we additionally investigate all series that are available in the

FRED-MD dataset and report the ratios of the number of times we reject the null for each

subcategory of this dataset.

Inflation and forecasting. In the first exercise, we want to forecast inflation, denoted

CPIt, at date t + 1 (the variable CPIAUCSL of FRED-MD). We focus on inflation as it is a

canonical example in forecasting using factor regressions, see, e.g., Stock & Watson (1999).

For this, we use all the variables xt (including the lag of inflation) at date t from the

FRED-MD dataset as regressors, and thus the regression therefore uses one lag of data. We

study the following model

CPIt+1 = f⊤
t γ

∗ + u⊤
t β

∗ + εt,

xt = Bft + ut, t = 1 . . . , T.
(7)

The final sample consists of T = 127 observations and p = 127 variables. We esti-

mate that there are two factors with the eigenvalue ratio estimator of Ahn & Horen-

stein (2013). We apply our test, choosing an equidistant grid of M = 2000 values of λ

and L = 2000 bootstrap draws (we use the same grid and values of M and L for our

other tests implemented in this section). To compute the p-value, we perform the test

for α ∈ {0.001ℓ, ℓ ∈ {0, . . . , 1000}} and let the p-value be equal to the largest value of α

for which we reject H0. For this exercise, we find a p-value of 0.022 and therefore reject

the hypothesis H0 of adequacy of the classical factor regression model at the 5% level.

This suggests that using a factor-augmented sparse regression model could better explain

future inflation compared to a factor regression model. Moreover, this indicates that the

expected value of inflation given past FRED-MD variables may follow a sparse plus dense

pattern rather than only a dense representation. We also implemented the FabTest on this

data. Following the procedure in Fan, Lou & Yu (2023), i.e., using 2000 bootstrap replica-

tions, cross-validation to compute the parameters of the LASSOs regressions and refitted
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cross-validation based on iterated sure independent screening to estimate the variance of εt,

the FabTest returns a p-value of 0.784. Hence, in contrast with our approach, the FabTest

does not reject H0 in this exercise.

Sometimes, practitioners include lags of the outcome variable in the regressors on top

of the factors (Stock & Watson (1999, 2002), Bai & Ng (2006)). If such lags are significant,

this could be the reason why we rejected H0. To address this concern, we consider the

alternative model

CPIt+1 = CPItδ
∗ + f⊤

t γ
∗ + u⊤

t β
∗ + εt,

xt = Bft + ut, t = 1 . . . , T,
(8)

where this time xt contains all variables at date t from the FRED-MD dataset except CPIt.

We apply the test for H0 : β∗ = 0, for the case with additional regressors as discussed in

the Appendix. We find a p-value of 0.023, so that we can reject H0 in this case as well.

Based on our full-sample testing results, we proceed to evaluate whether results general-

ize to out-of-sample predictions. In this case, we compare out-of-sample prediction accuracy

of two models, namely, factor model versus the factor-augmented sparse alternative. Our

objective in this exercise is to assess whether the inclusion of a high-dimensional sparse

idiosyncratic component in the factor model results in improved or diminished forecasting

accuracy. To conduct this assessment, we adopt the lag-augmented model specification

outlined in equation (8). We use the first half of the sample, t ∈ [1, ⌊T/2⌋− 1], to estimate

our model and generate the first out-of-sample forecast. Employing an expanding window

approach, we continuously add new observations into the estimation set, allowing us to

produce updated forecasts. Once we cover the entire out-of-sample period, t ∈ [⌊T/2⌋, T ],

we calculate the out-of-sample forecast errors. We employ 5-fold cross-validation to select

the tuning parameter in the LASSO regression.

We find that the out-of-sample mean squared error (MSE) ratio of the factor-augmented

sparse model relative to the factor regression model is 0.812. This indicates that the

inclusion of the high-dimensional idiosyncratic shocks leads to more accurate predictions

out-of-sample when compared to the classical factor regression model. This seems to be

in line with our full-sample testing results where using our test, we indeed find that the

sparse component is significant at a 5% significance level.
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Testing dense versus sparse plus dense alternative. Let us now turn to industrial

production, denoted IPt (the variable INDPRO of FRED-MD). We implement the same first

regression exercise as for inflation, i.e., in the case where the lag of inflation is included

in xt just replacing inflation by industrial production (see equation (7)). We study the

following model

IPt+1 = f⊤
t γ

∗ + u⊤
t β

∗ + εt,

xt = Bft + ut, t = 1 . . . , T,
(9)

and test the same hypothesis, i.e., H0 : β∗ = 0. The p-value of our test is equal to 0.121

and that of the FabTest is 0.880 (both are computed exactly as in the inflation exercise).

Therefore, using both tests, we do not reject H0. This indicates that the factor regression

model is adequate to explain industrial production and there is no need to introduce a

sparse component in the model. It also suggests that the data generating process is dense.

Interestingly, this result confirms the findings of Giannone et al. (2021), who, using a

Bayesian approach, also found that a dense representation was more suitable in a similar

regression exercise of industrial production. Our strategy relies on a formal frequentist test

and considers a different alternative. It is, therefore, complementary to that of Giannone

et al. (2021).

Motivated by contrasting results for inflation and industrial production variables, we

analyze each series in the FRED-MD dataset. That is, for each series we test β using two

model specifications we considered in earlier exercises, namely using only factors (equations

(7), (9)) and adding a lag of the outcome variable to the factors (equation (8)). We report

the rejection ratios at a 5% significance level for each subcategory of this dataset (see

McCracken & Ng (2016)). Results appear in Table 2. First, results show that, in most

categories, we reject the null hypothesis in less than 50% of cases, whether we rely solely

on factors or include a lag of the outcome variable. The exception is the Prices category,

where we reject the null hypothesis for 65% of the series. Notably, the addition of a lag

tends to reduce rejection ratios across all categories, except for Housing. This outcome

is expected since the significance of the lag may contribute to our rejection of the null

hypothesis. Interestingly, even after accounting for the lag, the Prices category continues

to exhibit a relatively high percentage of series for which we reject the null hypothesis —

specifically, 35%.
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Factors Factors+Lag

Consumption, Orders, and Inventories 0.400 0.100

Housing 0.000 0.100

Interest and Exchange Rates 0.455 0.091

Labor Market 0.452 0.032

Money and Credit 0.308 0.077

Output and Income 0.250 0.000

Prices 0.650 0.350

Stock Market 0.200 0.000

Table 2: Rejection ratios for each subcategory using factors (column Factor) and factors

with a lag of the outcome variable (column Factors+Lag).

6 Conclusion

This paper proposes a new tuning-free test for the adequacy of the factor regression model

against factor-augmented sparse alternatives. We establish the asymptotic validity of our

test under time series dependence. In a Monte Carlo study, we show that our procedure

has excellent finite sample properties. An empirical application illustrates the usefulness of

our method by testing the adequacy of factor regression against factor-augmented sparse

alternatives using the well-established FRED-MD dataset.

In the first case, our test rejects the null hypothesis of no sparse idiosyncratic shocks

component in a regression model to forecast inflation. This result remains robust even

when we include the lag of inflation as a regressor. These findings are in line with out-of-

sample prediction results, where factor-augmented sparse regression reduces the MSE by

19% compared to the traditional factor regression model.

In the second case, we examine whether the combination of sparse and dense models

is suitable for industrial production using our testing approach. In this instance, we do

not find evidence to reject the null hypothesis. Given the contrasting results observed for

inflation and industrial production, we extend our analysis to encompass all series in the

dataset. We calculate rejection ratios for each subcategory of variables. We reject the

null the for many series. However, our results suggest that, for the majority of series, the
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dense model is the appropriate choice, except for the Prices category. In this particular

case, we reject the null hypothesis 35% of the time, even when incorporating the lag of the

dependent variable as a regressor.

One possible limitation of this paper is that we modeled the dense component by a

factor model. We leave other approaches to model dense components to future research.

Appendix: testing with additional regressors

A Alternative model

As in Stock & Watson (2002), Bai & Ng (2006), we augment the model with additional

low-dimensional regressors w1, . . . , wt ∈ Rℓ (where ℓ is fixed with T ). We consider the

alternative model.

yt = f⊤
t γ

∗ + w⊤
t δ

∗ + u⊤
t β

∗ + εt,

xt = Bft + ut, t = 1 . . . , T,
(10)

Here, again, εt ∈ R represents a random error, ut is a p-dimensional random vector of

idiosyncratic shocks, ft is a K-dimensional random vector of factors, and B is a p × K

random matrix of loadings. The parameters are γ∗ ∈ RK , δ∗ ∈ Rℓ, β∗ ∈ Rp. Note that

here wt plays the role of an observed factor (with loading equal to 0). This will be key to

understanding the alternative testing procedure of Section B.

We focus on testing

H0 : β
∗ = 0 against H1 : β

∗ ̸= 0. (11)

To facilitate understanding, we again rewrite the model in matrix form as follows:

Y = F⊤γ∗ +Wδ∗ + U⊤β∗ + E ,

X = BF + U,

where Y = (y1, . . . , yT )
⊤, F = (f1, . . . , fT )

⊤ is a T × K matrix, U = (u1, . . . , uT )
⊤,

W = (w1, . . . , wT )
⊤ and X = (x1, . . . , xT )

⊤ are T × p matrices and E = (ε1, . . . , εT )
⊤.
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B Alternative testing procedure

Algorithm 2 present the test in this alternative model. It is similar to Algorithm 1. The

only difference is that P̂ is now the projector on the columns of the T × (K̂ + ℓ) matrix

(F̂ W ) in Step 3. Essentially, wt is treated as an observed factor.

1. Estimate K̂ by one of the available estimators of the number of factors.

2. Let the columns of F̂ /
√
T be the eigenvectors corresponding to the leading K̂ eigen-

values of XX⊤.

3. Compute Û =
(
IT − P̂

)
X and Ỹ =

(
IT − P̂

)
Y , where P̂ is the projector on the

columns of the T ×
(
K̂ + ℓ

)
matrix

(
F̂ W

)
.

4. Calculate an approximation λ̂α,emp of λ̂α as follows:

4a. Specify a grid 0 < λ1 < · · · < λM < λ̄, with λ̄ = 2T−1
∥∥∥Û⊤Ỹ

∥∥∥
∞
.

4b. For m ∈ [M ] compute
{
Q̂
(
λm, e

(ℓ)
)
: ℓ ∈ [L]

}
for L draws of e ∼ N (0, IT ) and

the corresponding empirical (1− α)-quantile q̂α,emp(λm) from them.

4c. Let λ̂α,emp = q̂α,emp(λm̂), with m̂ = min{m ∈ [M ] : q̂α,emp(λm′) ≤ λm′ for all m′ ≥

m}.

5. Reject H0 when 2T−1
∥∥∥Û⊤Ỹ

∥∥∥
∞

> λ̂α,emp.

Algorithm 2: Conducting a test of level α ∈ (0, 1) with additional regressors.

Supplementary material

Online Appendix: Additional simulation results and the proof of Theorem 1 (.pdf file).

R package: an R package implementing our test is available at https://github.com/j

striaukas/bootml.
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